
- Chapter V I I  - 
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( s ~ ? m ~ . r i z e d  Ly J. de ~ e e w u )  

1. Extensive 1,ileesurensc t 

The major problen o f  tie f o w ~ d a t i o n s  of oeasurercent i s  t o  fi::d 

axiomatic systkras t h a t  p e r n i t  the  c o ~ s t r u c t i o n  of homomorphic mppzngs 

of a  given empir ical  r e i a t i o n a l  syst2n,  which sa2 i i s f l e s  t h e  axioms, 

i n t o  an appropria te  numerical system, which a l s o  s a t i s f i e s  the  a ~ i o n s .  

I n  these  l e ~ t ~ ~ e s ,  t he  n m e r i c a l  system nril.1 alv~a:rs be a  subse't ui -tLe 

s e t  of r e a l  r m b e r s ,  Re. O f  course, S I I C ~ ~  einpiyical r e l a t i o ~ a l  s;/stems 

a r e  of s c i e n t i f i c  i n t e r e s ;  o s lg  if  t he re  i s  a t  l e a s t  ol?e interpretr t io:9  

f o r  which the  scions u z  (sppro2:inate) empir ical  l a w s .  I n  those cases, 

the  n&er ica l  reprecer- ta t ion su'mmrizes these  laws i n  a  way t h a t  it 

i s  easy both t o  remember a;ld t o  Illaiit. v a l i d  dedilctions. The s implest  

s t r u c t u r e  f o r  which measurement-theoretical considerat ions  a r e  poss ib le  

i s  the  system { A ,  ), > , rrber-. A i s  an a r b i t r a r y  s e t  and >, i s  some 

order ing r e l a t i o n .  ;'Je s h a l l  su?$ose t:mt ) i s  a weak ordor,  I.e. )/ 
% 

s a t i s f i e s  

i )  f o r  all x 6 A, x a 2: ( r e f  l e x i v i t ; ~ )  

i i )  f o r  a l l  x ,  :r, z C A,  i f  x ) y and 7 3 z, $her, x ), z ( t r m s i t i v i - t y )  

i i i )  f o r  ~ l l  x, y  € A, e i t h e r  x 3 y o r  y  ) x o r  both ( conilec.tcd,s.e3s ) 

I n  t h e  usua l  way, def ine  the s t r i c t  o r d e ~ i n z  > by 

and t h e  ind i f f e r ence  r e l a t i o n  N by 

x n - y  i f f  x ) y  and y ) ~ .  

I t  is e a s i l y  shovm t h a t  > i s  a s t r i c t  simple order and t h a t - i s  ZQ 

e q u i v a l e x e  r e l a t i o n  when a i s  a weak order. The representatior-.tileorem 

f o r  a weak order ing answers t h e  question: under what condi t ions  i s  

the re  2 horcomorphic napping of A i n t o  a subset  of Be? To formulate the  

answer, we need the  following de f in i t i on :  a subse t  B of a s e t  A i s  

ca l l ed  order-dense i n  A i f  f o r  a l l  x, y  C k and 6 B, t he re  e x i s t s  an 

element b € 3, such that :< ), b ) y. Then the  answer i s  given by -the 



Cantor-Birkhoff theorem: 

Theorem 1.1: Suppose that <A&> is a weak orderrd structure. 

There exists a function f, .chat mps A into Re ~torotonically, i.e., 

x >, y . iff f(x) > f(y), <or all x, y c A, 

iff A contains a countable order-dense subset. 

A sketch of a proof o? this repreanntation theorem can be found in 

Birkhoff .(l967, p. 200; it is r-ot quite correct: B must include the 

erd points of all gaps). The most familiar example ~f a countable 

order-sense subset is, of course, the s.et of rationai numbers con- 

sidered as a subset of the reals. The uniqueness fhao-em for the 

case under consideration is as follows: 

Theorem 1.2% If f and f1 are both homomoi.phisms of <A, >, > into the 

reals, then there is a strictly monotonic increas'ing numerical 

function y/ - such that f = y(fl), i-e., the representation forms an 
ordinal scale. 

This uniqueness theorem shows that a numerical reprnseatation of 

(A, } has a considerabln lack of invariance. Scientifically this 

is an obvious disadvantage (it renders classical analytic techniques 

nc~rl) useless) and that makes systems of this sircplicity of little 

inter2s-b. In general, howe~er, the data i~clude mo=e information 

than jutif a weak ordzring of an abstract set. By ~slng this additional 
Irif~riaa~ion, we attempt to strengthen the invariance of the repizsen- 

tation. 

O U ~  first example of addzd structure is the introductisn of a 

binary operation, written as 0. The theory of such systens A ,  , o) 
is called extensive neasurcment. The empirical situation ie familiar 

from and im~ortant for physics. We hzve a set 02 objccts A; these 
i 

obzects can be compared vcitii each other, and they can be concatenated. 

Examples w e  length, mass, znd time. In the ieasurement of mass we 

can put two different objects x and y in the pas of a pan balance 

(in a vacuum) and ~atablish,. by notin& which, if either, pan drops, 

whether x > y, y > x or X- yo Moreover, we can put two difzerent 

objects x and y in the same pan and study their combined effect, xoy. 
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Although the  d i r e c t  s igni f icance  of extensive ,nensurement f o r  p s p  

zhology i s  limited, the uathematios invoivee i s  fundalnental f o r  all 

other  neasurement systems. 

I n  c l a s ~ l ~ a l  tbeo2ies of extensive measurement, i t  is  assumed t h a t  

?;he systein i s  clo-ed under the binary operation o, i.e. 

I n  p r ~  c t i c e  , howe-.-er, unrestricted ooncateilation causes t rouble  

( i t  would, f o r  ax~znple, res l l l t  i n  the u l t imate  deatruct ioq of =y 

pan b a l a ~ s c ) .  Observe, Lqrcover, that i n  probabi l i ty  theory we havz 

p ( ~  UB) = ?(A) + p ( ~ )  when, =d only when, A a d  3 a re  d i s j o j n t  

events. This m e a s  t h a t  w ~ i o ~  of d i s j o i n t  s e t s  i d  very much l i k e  

concatenation, but c l e a r l y  u,?rzstrf cted concntem t i o r  (unions) i s  

not acceptable. To ove.Fcornt tnese  objsctions,  we add t a  the ay:;-i;em 

a s e t  ( r e l a t i o n )  B t h a t  io2mula ta~  -5hz r e s t r i c t i o a s  cn concatenation. 

B i s  a subset  03 A x A .  Y e r ~ c l i y ,  w e  i n t e r p r e t  (x,y) 6 F t o  nean t h a t  

x and y can be concatenated. 

The axioms f o r  (general ized)  extensive re?-.aurencnt a re  the  following: 

i) (A,  3)  i 9  a y e a b l y  ordered s e t  

i i )  B S A x A  - a n d 3 f p  

i i i )  o : 9 4 A  

i v )  if ( x , ~ )  d B x 3 x1 y ) yl, then ( x l , y l )  Q 3 

v) if ( x , ~ )  E B, (xoy,z) € B, fhen (y, z )  E B & ( X , ~ O Z )  d B - and 

(xoy) 02 - X O ( ~ O Z )  

v i )  if x ), y and (x,z)  € B, then xos ) yoz zox ), zoy 

Observe, tha t ,  by the  t h i r d  axiom, the  system is  closed under o i f f  

B = A x A. Axiom i v )  fo rces  a ce r t a in  s t r u c t u r e  on the  system, 'one 

t h a t  i~ plaus ib le  both f o r  probabi l i ty  and ?or mass. 1-1 t h e  l a t t e r  

case, L t  says: i f  two weights don't  break tne  balance, then two l e s s e r  

weights won't e i ther .  Axiom v)  a s s e r t s  that the  operation o i s  

associa t ive  provided t h a t  the  relevant  elements can be combined at a l l ,  

ad axiom v i )  shows t h a t  the  ordering i s  compatible with +,he operatio11 

o. A system (A,B, ) , o )  t h a t  s a t i s f i e s  axioms i ) - v i )  i s  cal led a 

weakly-ordered l o c a l  semigrou~. Such a semigroup i s  cal led p o s l t i v e  

i f ,  i n  addi t ion t o  i ) -v i ) ,  we have 

v i i )  f o r  c11 (x ,y)  E B, xoy > x & xoy > y. 



It is called solvable if in addition 

viii) - iI" x > y, then there exists a z t A, with (y,z) d B and x~yoz. - - 
Finally, in most measurenenf systems, we need Archimedean axion. 

This axiom is named after a pfoperty of the real numbers: if I~ is 

the set of positive integers and if a,p are positive reals, then the 

set (n ( nt1+ and P a r ~ a }  is finite. To use a similar axiom in our 

context vie need the notion of n copies of an element of A. We define 

nx by induction: 

a) IX = X, 

b) if (n-l )x E A and ((n-1 ),x) Q 3, then nx = (n-1 )xox, 

and we state the Archimedean axiom as follows: 

ix) for all x,y €A, the set {n ( n E I+, nx is defined and 
y )1 PV } is finite. 

Wow we can state the representation and uniqueness theorems for 

extensive measurement with rsstricted concatenation. 

Theorem 1.3: If <A,B,  2 ,o > is a positive, solvable, Archimedean, 
weakly-ordered local senigrou.p, then there exists a function f from 

A into ~e', such that 

x >, Y iff f(x) ), f(y), 

ii) if (x,~) E B, then f(xoy) = f(x) + f(y), 

iii) - if fl is another function that satisfies i) and ii), then there 

exists a positive number a such that for all nonmaximal elements 

x in A, f(x) = afl (x). (An element x of A is maximal if x 3 y 
for all y c A,) 

Axioms i)-ix) can be classed in two groups. In the first, we have 

those that are necessary in terms of the representation. They simply 

f3ll0~ from the fact that a representation with the properties 

mentioned in the theorem exists. This group includes axioms i), v), 

vi), vii) and ix). The second group of non-necessary properties are 

called structural conditions; they are only sufficient and not 

necessary for the representation to exist. This group includes the 

axioms ii), iii), and iv) that describe the structure of the set B, 
' i ,h* 
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and t h e  s o l v a b i l i t y  ~ i o m  v i i i )  that a s s e r t s  t h a t  ce r ta i r ,  equations 

can be solved.  

Vhether o r  not  these  axions can and/or raust be t e s t e d  exnpiricdl-y 

i s  a s u b t l e  problem. Iil physics t he  s o l v a b i l i t y  axiom v i i i ) ,  t h e  

p o s i t i v i t y  axiom v i i ) ,  and t he  w a k  order  axiom i )  a r e  assumed t o  

holC f o r  i d e a l i z e d  neasur iag  instriunents and an idea l i zed  s e t  of 

objects .  Vio la t ions  a r e  ascr ibed  t o  f r i c t i o n  of t he  pan balance and 

o ther  imperfect ions  of t h e  empir ical  s i t u a t i o n .  I n  psychology, t h e  

v i o l a t i o n s  of axiom i )  m y  be more s e r ious ,  because we do not always 

have a  c l e a r  i d e a  of w:wt I t idealt t  vrould nean. I n t r = s i t i v i t y  of 

preference =d, e spec i a l l y ,  of i nd i f f e r ence  are comon phenomena. 

One would l i k e  t o  have a  s u i t a b l e  s t a t i s t i c a l  nodel t o  t e s t  hypotheses 

and t o  a s s e s s  t he  se r iousness  of these  v i o l a t i o n s ,  but ir, t h e  a r e a  of 

fundamental measurement problems no s a t i s f a c t o r y  s t a t i s t i c a l  proce- 

dures  a r e  now ava i lab le .  - 
T h e o r w  1.3 i s  a g e n e r a l i z a t i o n  of a  c l a s s i c a l  theorem of Kalder: 

An Archimedean simply ordered group i s  isomorphic t o  a subse t  of t h e  

a d d i t i v e  r e a l s .  I n  t h i s  case o  i s  assumed t o  be a  closed group 

operat ion,  i .e. 6 = A x A, o  i s  a s soc i a t i ve ,  and i d e n t i t y  and in -  

ve r se s  e x i s t .  The ex is tence  of inverses  nakes t he  s o l v a b z l i t y  axiom - 1 v i i i )  unnecessary, s i n c e  x = yo(y ox). Vie r e t a i n  t he  important 

l t compat ib i l i ty t t  axiorll v i )  and a l s o  the  Archinedean a-xiom i x ) .  

A proof of Theorem 1.3 fo l lows  these  l i n e s :  f o r  x ,y  A, l e t  

~ ( x , ~ )  be t h e  l a r g e s t  i n t e g e r  f o r  which bo th  i ~ ( x , ~ ) x  i s  def ined anG 

y ), ~ u ' ( x , ~ ) x .  Such an i n t e g e r  e x i s t s  by t h e  Archimedean axiom. Vie 

d i s t i n g u i s h  two cases. I n  t h e  first, A has a  leas-L elenent ,  xo, 

r e l a t i v e  t o  t h e  given s r d e r  ), . It i s  e a s i l y  shovm t h a t  y-Ir(x , y ) r  
C 0 0 

o r ,  i n  words, y  can be e x a c t l y  reached by concatenating a f i n i t e  

number of copies  of xO. I n  t h i s  case, s e t  f ( y )  = ~ i ( r ~ , ~ ) ,  and i t  can 

be shovm without greak d i f f i c u l t y  t o  have t h e  des i red  r ep re sen t a t i on  

proper t ies .  I n  t h e  second case, we assume t h a t  A has no l e a s t  element. 

With x f i x e d  and y,z E A, consider.  t he  r a t i o  ~ ( x ,  y)/ l~(x,z) .  The 

numerator t e l l s  how many copies  of x a r e  approximately equal  t o  y, 

and t h e  denominator t e l l s  t h e  same th ing  f o r  z. If we t ake  x  smal ler  

and smal le r ,  which is poss ib l e  s ince ,  by hypothesis,  t h e r e  i s  no 

l e a s t  element, t he  approximations t o  y  and z become b e t t e r  and be t te r .  

I n  f a c t ,  i t  can be proved (by s tandard i n e q u a l i t y  techniques) t h a t  the  

r e l evan t  liet e x i s t s ,  and we de f ine  



f (Y)  li (x, y)  - = L i w  i 

f ( x )  4 1ii(x,z) 

The r e s u l t i n g  mapping f i s  then  shovm t o  have t h e  asser ted  proper t ies ,  

wi th  axiom v i )  playing a  most important ro le ,  An important f e a t u r e  

of this cons t ruc t ive  proof i s  t h e  use of a  scandard s e r i e s ,  vrhich 

cons i s t s  of t h e  s e t  of i n t e g r a l  mult iples  of a c e r t a i n  " s m a l l "  

element, t o  approximate o the r  elements. li'henever we use Hslder- 

type me%hods of proving r ep re sen t s t i on  thecrerfl.~, such s tandard 

s e r i e s  a r i s e ,  Idoreover they  provide a  p r a c t i c a l  cons t ruc t ive  method 

f o r  f ind ing  numerical represen ta t ions .  

Another p r a c t i c a l  method t o  ob ta in  r ep re sen ta t ions  from a  f i n i t e  

sample of d a t a  uses  r e s u l t s  concern iw systems of l i n e a r  i nequa l i t i e s .  

If there  i s  an order preserving, add i t i ve  mapping 2 of F. f i n i t e  s e t  

k i n t o  t he  r e a l s ,  the2  f o r  a l l  x,y,u,v i d ,  nf have 

xoy uov i f f  f ( x )  + f ( y )  f ( u )  + f (v ) .  

Each i n e q u a l i t y  i n  t he  d a t a  s t r u c t u r e  d'efines a  numerical i n e q u a l i t y  

t h a t  i s  s a t i s f i e d  i f  t h e  a d d i t i v e  r ep re sen ta t ion  i s  va l id ,  C lea r ly  

<A, >, , o > has such a  r ep re sen ta t ion  i n  t he  r e a l s  only i f  t h e  system 

of i n e q u a l i t i e s ,  Aefined by t h e  ordering i n  t h e  d a t a  s t r u c t u r e ,  has 

a t  l e a s t  one solut ion.  An extefisive l i t e r a f u r e  exis- ts  on the  solut ion,  

w-iqueness, and algori thmic aspec ts  of t he  problem of systems of 

Linear i nequa l i t i e s .  

1x1 probab i l i t y  theory the  p r inc ipa l  p r i a i t i v e  not ion i s  t h a t  of a .  

I event'  u sua l ly  in te rpre ted  t o  be a  subset  of t h e  un iversa l  s e t  o r  

sample space X. To cope e f f e c t i v e l y  with  i n f i n i t e  sample spaces ,  it 

has proved necessary t o  riestr ' ict  the  system of events so  as not t o  

include a l l  subse ts  of X. Spec i f i ca l ly ,  we confine ourselves  t o  a  

non-empty s y s t r a  & of subse ts  of X t h a t  s a t j s f i e s  t h e  fol lowing 

conditions: 

i) if  A C &  , then A E k ; 

i i )  i f  A , B E  b ,  then A U B  k . 
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Such a system i s  cal led ar; algebra of subsets. I t  follows from i )  

znd i l )  and non-emptiness, t h a t  X = A U K  s t  and so by i), 9 = P C  b ; - 
moreover, if  A,B L b, then An 9 c b s i n c s  An3 = 1 ~ 5 .  I f  the  wiiocs 

of. c o x ~ ~ n b l e  co l l ec t ions  of events a r e  a l s o  events, b i s  cal led e. 

a-algebra. 

A ( f i n i t e l y  add i t ive )  p robab i l i t y  space i c  defined t.o be a t r i p l e  

(x,  L,P) , f o r  which t is an algebra of subsets  of X,P is a measure 

from L i n t o  R e ,  i.e., f o r  a l l  A,B C b, 

i i )  i f  AAB = 9 then P(AVB). = P(A) + P(B); 
. . 

and P i s  a p robab i l i t y  neasure i n  t h e  sense t h a t  a l s o  

i i i )  P(X) = 1. 

This d e f i n i t i o n  of a probabi l i ty  space and the  in t e rp re t a t ion  of 

p robab i l i t y  as a measure' i s  due t o  Kolmogorov (1933). 

The question "what i s  probabili ty?" has given r i s e  t o  controversies 

among f r e q  e n t i s t s ,  ob jec t iv i s t s ,  Bayesians, s u b j e c t i v i s t s , ,  l o g i c i s t s ,  Y 
e tce te ra .  I r e e l  t h a t  t he  quest ion i s  of no d i f f e r e n t  character  Tron 

=y o ther  raeasurcment question, such as "what is  mass?". Indeed, one 

can imagine equally heated debates over the answer t o  t h a t  question, 

although they have not ac tua l ly  occurred. Alternat ively,  perhaps the  

arguments about p robab i l i t y  a re  lnisplaced and it, too, should be 

t r e a t e d  a s  another problem of fundamental measurement. The contro- 

v e r s i e s  a r e  due t o  the  f a c t  that whenever r e l a t i v e  frequencies cennot 

be used, t he  most comnon measuring i n s t r w e n t  ir, p robab i l i t y  neasure- 

nent i s  the  a l l  too  va r i ab le  hman being. 

The f o r n a l  measurement problen of f indlng  necessary a=d su:Pficienk 

conditions f o r  the  exis tence of an order-preserving nap-ping of a 

system (x, k,,.>,> i n t o  a probabi l i ty  space (I, L , P )  requires  the  

exis tence of a weal< ordering, ) , of q u a l i t a t i v e  probabi l i ty  on e .  
Soiird ways i n  which t h i s  vjeak ordering of events can be obtained give 

r i s e  t.0 terms such a s  t tsubject iven or  I t in tu i t ive t t  probabi l i ty .  These 

terms nay prove misleading becai~se they suggest an inherent  sub- 

jec t iv ism which, i n  f a c t ,  probably onl;r r e f l e c t s  the  present s take of 

the  a r t .  Tne ways t o  assess  a imy a l t e r  with the  development of the  

science, j u s t  a s  i t  has with other  measurenents. A t  one t i n e  the  only 

ins t runez t  f o r  comparing the  mass of d i f f e r e a t  cb.jects must 1lav.e been 



t h e  human being. Gradually, ma$ was replaced by more s a t i s f a c t o r y  

- more consis tent ,  r e l i a b l e ,  p r ec i se  - instruments,  such a s  t he  pan 

balance, t he  ca re fu l ly  subdivided r u l e r ,  e tc ,  So far i n  probabi l i ty  

measurement, no r e a l l y  adequate instruments have been devised except 

when events a r e  highly rep.eatable o r  when c e r t a i n  types of arguments 

based on physical  symmetry a r e  possible .  

Observe t h a t  t he re  a l ready i s  a f a i r  amoun of s t r r c t u r e  i n  t he  f 
system (x, &, , >, > . Besides;>, being a we& order ,  r e  have assuned 

t h a t  b i s  an a lgebra  of subsets.  We'  start our a r iomat iza t ion  with 

de P i n e t t i t s  (1937) 'requirements f o r b  q u a l i t a t i v e  p robab i l i t y  struc- 

t u r e  : - 
i )  i s  a weak order  over h , 

i i )  A 2 0 f o r  a l l  Arb , X > P ,  

i i i )  f o r  a l l  A,B,C,D € L , - i f  AAB = b, C n  D = 9 - and AND, 

B 3 3  i f f  AUB >/ C U D ,  - 
The conditions a r e  c l e a r l y  necessary f o r  t h e  exis tence of athe re-  

quired numerical p robab i l i t y  measure, but they a r e  not su f f f c i en t .  

This was proved by Kraft ,  P r a t t  and Seidenberg (1959), who constructed 

the  following ingeneous counter-example. 

Suppose t h a t  X i s  the  five-element s e t  {a,b,c,d,e) , and & = 2 
X 

(= s e t  of  a l l  subse ts  of x),  We first note t h a t  i f  3 is  a qua l i ta -  

t i v e  p robab i l i t y  f o r  which t h e r e  i s  a represen ta t ion ,  then from 

i t  follows t h a t  

The proof i s  very easy. Replace the  t h ree  i n e q u a l i t i e s  by t h e i r  

numerical analogues i n  t h e  representat ion,  e.g., {a} ) (b,d) by 

P( { a ]  ) ) P( ( b ]  ) + P( i d }  ). Add these  t h r e e  i n e q u a l i t i e s  and 

cancel t h e  same terms from both s i d e s  of t h e  r e s u l t i n g  inequal i ty ,  
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This yields ~({c)) + ~({e)) > ~({a)) + ~({b]) + ~({d)), from which 

{c,e) ) {a,b,d) follows. 

Now suppose that we have some measure for which these four in- 

equalities-hold and for which there is no set A € b with P(A) between 
~({c,e]) and P({a,b,d)). For example, with 0< & <1/3, it is easy to 

see that the following measure will do: 

Since the ordering >, induced by P satisfies the axioms of qualitative 
probability, so do those of )+ which is obtained from ' a  by keeping 
everything else the same except {a,b,d}. )+ (c,e). Obviously, )+ 
does not have a numerical representation since it violates the above 

four inequalities. 

This makes it clear that more is needed to prove a representation 

theorem. One of the things that we need is an Archimedean axiom 

(though it is not enough, since it is satisfied in any finite system 

such as the Kraft -- et ale example), To formulate this, we need the 

following definition: 

A sequence of events A1, ..., Ai, ... E L is called a standard 

sequence relative to A if there exist Bi,Ci € L, i=1, 2, . . . . , such 
that 

ii) ~i A Ci = B 
iii) B i N  Ai 

iv.) C i w A  

V) = B ~ V C ~ .  

This inductive definition does not make the system unbounded since, 

for each Ai, we still have X )Aie We state the Archimedean axiom as: 

iv) Por each A>O, any standard sequence relative to A is finite. 

We can now continue in one of two quite different ways. The first, 



due to Scott (1964), is to s tste necessary a d  sufficient con- 

ditions for the finite case by using the linear inequality technique 

mentioned in the previous section on extensive measurement. The 

other, followed by Koopman (1940a, 1940'0, 1941 1, de Fineti (15371, 

Savage ( 1954), and Luce ( 1967), involves simpler sufficient condi- 

tions but includes a rather strong existence (solvability) axiom. 

The first three authors postulated that there are partitions of X 

into arbitrarily many equiprobable events. The latter used instead: 

v) for all A,B,C,DC k ,  - if AnB = 8, A>C - and B,D, then there 

exist c',D',E e L  , such that - 

c) E2C1 -- and EZD1, 

d) C1-C and Dl-D. - 
This axiom postulates the existence somewhere else in the sp.ace of 

disjoint, probability-muivalent copies of the not necessary disjoint 

sets C and D. Moreover, these copies are included in a c~py of the 

union of-two other disjoint sets A and B that are more probable than 

C and D. Axioms i)-v) together are sufficient for the existence of a 

probability measure. 0ne.proof first introduces a restricted con- 

catenation operation as follows: If denotes the equivalence class 

containing A, then let ." N a = {(A,B) 1 A>$, B>$, and 311' GI, BI e i i 3 ~ ~ n ~ ~  = 

When both A and B are very probable, they cannot be concatenated 

because no pair of .events indifferent to the (A,B) pair will be dis- 

joint. We now define the concatenation operation 

By the definition of , concatenation is restricted, essentially, 
to disjoint events. 

Theorem 2.1 : If (x, k, 3)  satisfies axiom i)-v), - then ( k k w ,  >, , 0 )  

is an extensive system (i.e. a positivh, solvable, Archimedean, weakly- 

ordered local semigroup]. 
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Surprisingly ~nough, the only tricky part of the proof is to show 

associativity. It follows immediately from Theorem 1.3 that a measure 

I? exists, and by Axiom ii) we m y  choose its unit so that P(X) = 1. 

Thus P is unique. An extension of this theory to a weak ordering of 

conditional events, i.e. of the form A ( B ), C I D, can be found in 
Luce (1968). The big problem there is that we must construct both the. 

multiplicative structure inherent in the conditional probability re- 

presentation, i.e., 

and, at the same time, the usual additivity of probability, i.e,., 

Additivity is established by showing that the of2ering induced by 

AIX )B IX  on &, satisfies the ~bove unconditional axioms. The condi- 

tional axioms are also show tc leai!, via extensive meas'urement 

theory, to a representation satisfying eq. (1) which is unique up 

to 5 positive power. The main difficulty in the proof is to show that 

the probability of eq. (2) is the same as one of the family satisfying 

eq. (1). Techniques of functional equations are used to show this. 

3. Positive Difference Stmctures 

A possible task for measurement theoreticians in the behavioral 

sciences is to try to reduce the natural formulation of their pro- 

blems to cases of extensive measurement. A useful trick, it turns 

out, is to reduce them to the special case of extensive measurement 

known as positive difference structures. These structures can best 

be exemplified by an axiomatization of length measured on a long 

(possibly i~inite) ruler. 

If we compare length pith mass, one of the main differences not 

captured by extensive measurement is the fact that length is naturally 

isomorphic .with intervals on the real line. Intervals can be charac- 

terized by their endpoints, and the concatenation of adjacent inter- 

vals is especially natural: ab o bc = ac. The concatenation of non- 

adjacent intervals, such as ab and cd, has no comparable direct 

definition and one of our problems is to formulate an indirect one. 

Each interval can be identified in two ways: as ab and as ba. There 



is, however, a natural interpretation of direction, which leads io 

calling one a positive interval and the other negative. We will 

atte:~d only to a subset, which will be called A*, af the positive 

intervals. 

The primitives for our axiom s~stem =e an abstract aet A, a set 
A*C A x A, which will 'be axiomatized - in such a way as to be inter- 

preted as a set of positive intervals, and >, , an ordering on A*, 
i.e. a subset of A x A x A x A. The axioms are: 

is a weakly ordered set; 

ii) if ab, bc, at bl, b1 c1 E A* and if ab >, at b1 - and bc 2 b7 9 -  then ' 

a) ac, a1 cl E A*, and 

lii) - if ab, bc d A* - then ac > ab, bc; 

iv) - if ab, cd A'= ab > cd, - then 1 cl, dl 6 A3ad1-clbucd, 
v) for all ob, bc, abl , b1 c E A*, if ab-b1 c, - then abl- bc. 

Axioms ii)-v) have a very simple interpretation in terms of length, 

and car- be illustrated by drawing a line with the relevant points on 

it. In such a structure, a sequence al, ..., ai, ... E A with 

(ai+l, ai)€ A*, for all i, is called a standard sequence iff there 
* exists an abEA such that ai+lai'vab for each i. 

vi) {ai) is a a-bandard sequence, then n n C I+, cd 3 %al is finite 

(archimedean axiom). 
( 1  

We nJw define 

/ r v  N .  N d  

And if (a5, cd) E B, then ab o cd = a' c1 . 
Theorem 3.1: - If <A,A*,)) satisfies axiom i)-~i)~ then 

(A* 1-5 Bt 2 9 0) is an extensive system, provided that there 
exist ab, cd € A* such that ab>cd. - 
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Cor ro l l a ry  3.2: There e x i s t s  a real-valuee,  o rder  preserving m a ~ p i n g  

on ~*ltuwhich i s  unique up t o  m u l t i p l i c a t i o n  by a p o s i t i v e  r e a l  

number. 

C o r r o l l a r y  3.3: If a ,b  € A ,  i f  no t  ac-bc f o r  a l l  c  E A ,  and i f  f o r  a l l  

a, b, E  either ab E A* - o r  ba E A*, then t he re  e x i s t s  a func t ion  

: A+Re, such that 

is  unique up t o  a p o s i t i v e  l i n e a r  transformation.  

4. Addi t ive  Conjoint  Measurement 

For  most a t t r i b u t e s  of i n t e r e s t  i n  t he  behavioral  sc iences  no 

n a t u r a l  concatenat ion opera t ion  i s  ava i lab le .  This  means that the  

d i r e c t  use of ex tens ive  measurement i s  iaposs ib le .  If we accept 

&.It. Campbell's dictum "fundamental measurement = extensive neasure- 

nent",  then fundamental measurement i s  iinpossible i n  t h e  behavic ra l  

sc iences .  T h i s  conclusion w a s  reached a f t e r  c a r e f u l  d e l i b e r a t i o n  by 

t h e  members (among them campbell) of a B r i t i s h  coronittee who inves- 

t i g a t e d  t he  p o s s i b i l i t y  of measurement i n  psychology. It baa proved 

f a r  too  pes s imi s t i c  and premature s ince ,  i n  r ecen t  years ,  a number 

of q u i t e  d i f f e r e n t ,  but  equa l ly  fundamental, systems have been pro- 

posed, anong them conjo in t  measurement, t he  t o p i c  of t h i s  s ec t i on ,  

and sub jec t i ve  expected u t i l i t y ,  t h e  t o p i c  of the  6 t h  one. I n  COE- 

j o i n t  measurement no concatenation opera t ion  i s  assumed, but ano ther  

kind of s t m ~ c t u r e  having t o  do with t h e  f a c t  t h a t  most a t t r i b u t e s  

can be manipulated by s e v e r a l  indepelident va r i ab l e s ,  sometimes per- 

mits r ep re sen t a t i ons  of t he  fol lowing type. 

Le t  ) be an order ing  of a Carf e s i a n  product .+ A;, where each 
1=1 

Ai i s  a s e t .  Such a s t r u c t u r e  i s  ca l l ed  d e c o ~ p o s a b l e  r e l a t i v e  t o  

( a  real-valued func t iop )  P: ~e~ +Re i f  t he re  e x i s t  func t ions  

yi: Ai+Re, 1  ...: n, such t h a t  f o r  a l l  ( a l ,  ..., an) , (b l ,  ..., bn) 

€ r~~ : 

(a,, ... ,a n ) b (b l ,  ...,b n  iif F( y l ( a l ) ,  f D 3 ( a n ) ) 3 ~ (  ~ l ( b l ) , - ~ ~ ,  

Phis 8 . e f in i t i on  expresses  the  f a c t  t h a t  t he  cont r ibu t ions  of t h e  

va r i ab l a s  t o  the  o v e r a l l  neasure a r e  independent of one another. T h i s  



is a very general requirelrre~t, but i'c is 5y no means a trivial one, 

sinoe it is not sa3isfied i n  z l l  cases. For example, suppose that 

n=2 and let yi: Ai+Sa and yi. Ai-'Re for i=1, 2, be given 

functions. For all a,b E A1, ;l,q B A2, define the ordering ) on 

8.1 X A2 by 

This "additive structure with independent interactiontt is not in 

general decomposable relative to aily function. In spite of the na- 

tural interest in %his model as, perhapz, the simplest form of inter- 

action, we know nothing about its propertfes. No necessary conditions 

(except weak ordering) have been discovered. 
Jt The only two-componen2 cases so far investigated are the additive 

one, ~ ( x , ~ )  = x + y, and the multiplicative cne, ~ ( x , ~ )  = xy. In 

general, the multiplicative model can not be reduced to an additive 

one by a logarithmic transformation because t k e  scale values may be 

negative. In the three-component case, the functions ~ ( x ,  y, z) = x + y + s, 

xyz, (x + y)z, and x + yz, are thoroughly investigated. In the.seque1 
we will confine ourselves to the n-component additive case. 

The most familiar example of an additive model is, of course, the 

one from economics that says that the cardinal utility of a commodity 

bundle is equal to the sum of the utilities of each of its compo- 

nents. As a matter of fact this model inspired much of the earlier 

work on additive conjoint measurement (cf., for exanple, Debreu, 1960). 

In psychology a two-dimensional example is obtained if we let sub- 

jects compare the loudness of pure tones, varying both their inten- 

sities and frequencies. In both examples it is possible to draw in- 

difference curves to represent the equivalence classes in the data 

structure. The theory establishes a systematic way to associate 

numbers with the indifference curves that, in a sense, represent the 

amount of attribute exhibited by that curve. 

An example where this has been done successfully (but independently 

of the theory, I must admit) can be found in studies of Campbell and 

Masterson (19683 on the aversiveness of shocks. On one side of a 

shuttle box they placed shock with resistance Z and voltage VZ, and 

on the other, shock with resistance 2 and voltage V . Throughout 
0 0 
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the experiment Zo was held fixed, and for each (2,~~)-pair they 

discovered the value of Vo such that 5% of the animals selected 

each side. They found that the empirical values satisfied a relation- 

ship of the f orrn 

which is equivalent to the additive form 

Many other examples of trade-off between variables can be found in 

the literature. 

In all axiomatisations of additive conjoint measurement, certain 

necessary cancellation conditions play an important part. One of these 

condi<ions expresses, quite directly, tde fundamental independence of 

the variables: for all a,b€A1 and p,q€A2, 

Notice how this follows if an additive representation is true: 

( a d  3 (b,~) iff pl(a) + y2(p) 2 pl(b) + p2(P) 
iff pl(a) 3 pl(b) 

iff yl(a) + p2(q) b yl(b) + ~ ~ ( 9 )  

iff (a,q) 3 (b,q). 

AS a matter of fact this condition justifies the natural definition 

of an induced order 3, on the first dimension: 

a >/, b iff t( k € A2 we have (a,x) 2 (b,x). 

Similarly, we may define a2 on the second dimension. Another pro- 
perty that can be arrived at in the same way is called double can- 

cellation: for all a,b,f C A1 and p,q,x E A2, 



Other cancellation propertieti can be obtained by considering three 

or more inequalities in which all save four elements can be "can- 

celledn. Lcter, we explicitly give one of the three inherently 

different form of triple cancellation. All these conditions are 

necessary, and all may be checked directly in any set of data. For 

fairly large data structurea, this is a very time-consuming task; 

indeed, it is only practical if a computer is used. 

We may, howeTrer, restrict the number of necessary conditions 

needed to get an additive representation by strenghtening the suffi- 

cient conditions that impose structure on the system. This is done 

in the following axiomatization of n-dimensional conjoint measure- 
n 

ment, with n > 3 .  Let A denote the cartesian product .TT Ai, when 
1= 1 

is a weakly ordered set. 

ii) - If N = (1, 2, . ., , then for all M S  N the ordering induced 

on Ai for any fixed choice of elements in 7 7  Ai is - iEM , i 6 N-M 
independent of that choice. 

... 

Axiom ii) permits us to define Ti 03 Ai in the obvious way, and it 
turns out to be the only cancellation axiom that we need when n 3 3, 

provided that we impose a strong solvability condition. Luce and 

Tukey ( 1964) postulated the following solution (of ec$jations) axiom: 
. r  ; 

V a, b.€ A1, p € A2, 3 x ' A2 3 (a,p)-(b,x). T h i e  has bee; justly cri- 

ticized as being too strong; in many examples it is easily seed not 

to be satisfied (e.g., loudness judgments). Therefore, Luce (1966) 

modified it to the following restrict.ed solvability condition: 

)f a,bcAl, p8Ap, if 3 Tfx 3(b,?) >, (a,p) 2 (b,~), then 3 x 3 (b ,x)  

-(a,p). A simple generalization gives us 

iii) For all (al, . . ., an) c A, (bl, . . . , biwl, b ,  . . . , bn) E. 

A1 X.. .XAi-lMi+l X.. .x%, if there exist a Ti - .  and a b i such that 

then there exists a bi such that (bl, . . .,bit .. . , bn)-(al, O O . ,  ai, '1  4 
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Ifloreover, we need a non t r i v i a lne s s  axiom: 

i v )  For  a t  l e a s t  t h r e e  components ki t he r e  e x i s t  ai, biC Ai such t h a t  

a i  >i bi. Such components a r e  c a l l e d  e s s e n t i a l .  

I n  o rde r  t o  s t a t e  t h e  necessary krchimedean axiom, vfe need t h e  fol lowing 

d e f i n i t i o n :  Let  I< be a succe°ssion of i n t e g e r s ,  p o s i t i v e  and/or negat ive ,  

f i n i t e  o r  i n f i n i t e :  A sequence (arl a r c  Ai A Y ~ B  /\3p,q e l j ,  j # i, 3 
Y 

(...,ai ,..., p ,... )-( ..., a:fl,...,q ,...) f o r  Y , ~ + ~ c i n ) i e  c a l l e d  a 

s tandard  sequerce .  The Archimedean axiom simply is 

v )  Every bounded s tandard  sequence .is f i n i t e .  - 

Theorem 4.1; If ax ions  i ) -v )  hold, then  t he r e  e x i s t  y i  : Ai 4 ., 

Re, % = 1, . . . . , n, such t h a t  f o r  a l l  ( a l , .  . . , an ) ,  ( b l  , . . . , bn) G A, 

(a l , - - ,an)>,(bl , -&)if f  
n  n  
z a .  3 . 2  yIi(bi)' 
i= 1 I= 1 

Moreover, if i s  a n o t h t r  s e t  of such func t ions ,  then  

i=l  , . . . ,n, such t h a t  li = a P i  + P. 

Notice  t h a t  we have n o t  y e t  formulated a r ep re sen t a t i on  -theorem f o r  t h e  

two-component cases.  Th is  w e  must do, no t  o r l y  because i t  i s  of i n t e r e s t  

and importance i n  i t s  own r i g h t ,  but  a l s o  because t h e  on ly  hown  proof 

of t h e  n-component case  invo lves  reducing t h e  problem t o  t h e  two-com- 

ponent case.  There is no need t o  a l t e r  t h e  weak oraer ing ,  s o l v a b i l i t y ,  

and Archimedean axioms i n  t h e  two-component case. The p rope r ty  of in-  

dependence is,  however, t oo  weak and i t  i s  rep laced  by two cance l l a t i on  

p r o p e r t i e s ,  namely, double cance l la t ion :  

( i i )  f o r  a l l  a ,b , fEA1 & p,q,x€A2 

( 8 , ~ )  3 ( f , ~ )  A ( f , ~ )  >/ ( b , ~ )  imply ( a 9 p j  3 (b ,q )  

and by one of t h e  t h r e e  jorms of t r i p l e  cance l la t ion :  

( i i i )  f o r  a l l  a , b , f , g  C A I  p , q , x , y ~ A 2  

( a ,x>  3 ( b y )  A ( f , ~ )  >, (g ,x)  A(g ,p )  3 ( f , g )  imply 

2 (b ,q ) .  



Prom these assum_~tions i t  i s  e a s i l y  shown that independence holds 

and s o  a weak order ing i s  induced on each zomponent. The f i n a l  assumption 

i s  t h a t  both co-ordinates a r e  e s sen t i a l .  This  1s a l l  t h a t  i s  needed, 

Theores 4.2; - I f  < A . , X A ~ ,  2) s a t i s f i e s  t he  weair ordering,  double and 

t r i p l e  cance l la t ion ,  r e s t r i c h d  s o l v a b i l i t g ,  Archimedean and e s sen t i a l -  

ness  conditions,  .- then t h e  conclusion of theorem 4.1 holds w i th  n=2. 

It is an open problem t o  show t h a t  double and t r i p l e  cance l l a t i on  a r e  

independer+ axioms, o r  t o  de r ive  one from t h e  other.  

We now o x t l i n e  t h e  na ture  of t h e  proofs of Theorem 4.1 and 4.2, 

Let  Ai and A. be any two e s s e n t i a l  compo~ents i n  t h e  n-component case. J 
I - t  i s  easy t o  see  t h a t  t he  induced c rde r  aij s a t i s f i e s  a l l  of t h e  

asouraptions of Theorem 4.2 except t h e  two cance l l a t i on  proper t ies .  

These a l s o  follow. It i s  f a i r l y  d i f f i c u l t  t o  prove them f o r  r e s t r i c t e d  

s o l v a b i l i t y ,  but easy f o r  un re s t r i c t ed .  For example, suppose a ,  b,f C Ai 

and p,q,xEAj and ( a ,x )  3 i j ( f , q )  and f p  i j ( b , x )  Le t  Ak be any o t h e r  

e s s e n t i a l  component and l e t  u  €Ak.  By s o l v a b i l i t y ,  3 v  € Ak such that 

and so  (x ,v)  3.  (q ,u) .  Since ( f  , x , u ) w i  j k ( a , ~ , ~ ) ,  then by independence 
~k  

x  may be replaced by p, and s o  

Thus, ( a , )  2 (b, )  . The proof f o r  t r i p l e  cance l l a t i on  i s  sinilar. 

By theorem 4.2, t he re  e x i s t s  an add i t i ve  r ep re sen ta t ion  jPi + yj  on 

Ai X Aj. 

There is ,  however, a  problem, Suppose we gicked i , j  eN and found 
I 

mappings Yi: li + ~ e '  and Y j  : A .  + Re. We can of course a l s o  choose J 
another  p a i r  i, k  E N, wi th  k  # j. T h i s  g ives  us  t h e  mappings y1 : Ai + Re and i 
Pk: Ak-*Re. It must be shown t h a t  = a Yi+p, with  a >O. F ina l ly ,  

i t  can a l so  be shown t h a t  if we choose o m  func t ions  pi c a r e f u l l y  so  

t h a t  t h e  u n i t s  and zeroes  a r e  appropr ia te ly  r e i a t ed ,  then t h i s  provides  

a=1 a d d i t i v e  represen ta t ion .  When we accept  t h i s ,  t h e  problem i s  reduced 

t o  t h e  two-component one. 

The next s t e p  i n  fhe reduc t ion  process used t o  prove Theoren 4.1 i s  t o  

reduce the  two dimensional system of Theorem 4.2 t o  a spec i a l ,  symnetric 
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case. In Figure.1, the cartesirn product A1 x A2 is po~trayed as a 
rectangle, as it will be in the desired representation. 

Figure 1 

The points ao,al,po,pl are chosen in such a way that (ao,pl)-(a ,p ) 
I 0  

and they determine the unit and the unit square consisting of all points 

(x,~) for which al) x >,ao and pl ) y )pO (the shaded area in Figure 1). 

Suppose that we now want to assign a number to the point (a,p) in 

Figure 1. We move unit steps in both directions until we arrive at a 

point in the unit square. This process is also illustrated in Figure 1. 

Then, of couxse, the sensible thing to try is the assignment: 

where the coordinate; (a-1, p-2) are coordinates of a point in the unit 

square, The main part of the proof is to show that this inductive pro- 

cess.can indeed be carried out. It relies heavily on the assumed triple 

cancellation and restricted versions of the other two triple cancellation 

conditions which can be proved from the axioms. 

A system (A~ X A ~ ,  3) is' called symmetric if for all a, bf A1, 

3 ptq€ 3 (a,p)~(b,~@$. Such systems can be mapped into a square, 

whereas the general case results in a rectangle. So we are done if we 

can get the representation in thiscase. Define the set 



A1* ={ab 1 a , b h A l l ( a > l b  ,and d e f i n e  >1* on A1* by 1 
* * 

i f  ab, cd t A1 , t h e n  ab a1 od i f f  \I p, q C A2 whenever 

Do t h e  same t h i n g  f o r  t h e  second coord ina te ,  which g i v e s  an A p a n d  
* 

a >r! . Now i t  can be proved t h a t  <A1,A1*, al*) and <A2,A2*, a2* ) 
s a t i s f y  t h e  axioms f o r  p o s i t i v e  d i f f e r e n c e  systems,  s o  by c o r r o l a r y  

3.3 ( p r e v i o u s  s e c t i o n )  

ab al* cd iff p l ( a )  - p l ( b )  ) f l ( c )  - v l ( d )  

* 
PP a2 U V  iff y 2 ( p )  - f 2 ( q )  , f 2 ( u )  - 5D2(v) 

Moreover we p i c k  an al > a. and pl > po s u c h  t h a t  (ao,P1)u(al  ,Po)  and 

we s e t  ? ,(ao)  = Y2(pO) = 0 and y l ( a l )  = p 2 ( p , )  = 1,  a d  d e f i n e  

Yl (ab)  = y l ( a )  - P l ( b ) ,  y Z ( p q )  = P 2 ( p )  - P 2 ( q ) .  The n e x t  thing 

t o  be e s t a b l i s h e d  i s  tha t  t h e  two systems ( A ~  ,A,*, and 

(d2,A2*, a2* ) have e s s e n t i a l l y  t h e  same s t r u c t u r e .  

N 

Define  : @(3) = pp iff ( a , ~ ) ~ ( b , q ) ,  

t h e n  it i s  shown that  6 i s  a n  isomorphism, and that y1 = Y2( 0) .  
The f i n a l  s t e p  i n  t h e  proof of Theorem 4.2 is simple:  I t  j u s t  r emains  

t o  be proved t h a t  t h e  Y ' s  a r e  o r d e r  preserving.  Observe t h a t  

+ T 2 ( p )  > Y ) ~ ( ~ )  + y 2 ( q )  iff Y),(a) - p l ( b )  & p 2 ( 9 )  -f2(p) 

iff y , ( Z )  > y 2 ( 3  

iff y l ( z )  a&(l%Z)), where ( ~ , p ) - - ( d , ~ )  

iff , y l ( Z )  2 y1 (3) 

i f f  al; >,* 3 

iff (a,p)  3 ( b , q )  
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5, Bisymmetry Systems 

A theory due to Pfanzagl, which assumes a concatcnetion operation, 
can be reduced to additive conjoint measurement. His theory is similar 

to extensive measurement, but it is more general in that, among other 

things, it axiomatizes the'fomtion of weighted means. Suppose that 

p is a fixed number in [0, l j  and for any real numbers a, b, we define 
a o b = p a +  (1 -P)b. We see that o has many properties different 

from extensive measure~ent. Por example, a o aua, o is not commutative, 

and o is not associative. 

Pfanzagl begins with a structure (A, o,*) and he assumes: 

i) (A, >,) is a weakly ordered set, 

ii) a ~ b i f f a o c ~ b o c ~ ~ c o a > , c o b ,  

iii) A is connected in the order topology induced by , 
iv) a o b is continuous in both a & b, 

V) (aob)~(~~d)~(aoc)o(bod). 

This last axiom, the bisymmetry axiom, does rot imply that the system 

is associative and/or commutative, Observe that this axiom is true 

for weighted means, Pfanzagl proved the following result: 

Theorem 4.3: f (A,o,>,) saPisfies axidms i)-v), there exist real 

numbers d > 0, and a function : A *Re such that P ;  Y' 
i) a3b iff ~ ( a )  2 ~(b), 

ii) is continuous, 

iii) y)(a.ob) = f ?(a) + dy(b) +A, 
iv) if y '  also satisfies,. i)-iii) then - I' = a j?2 + p,  with a > 0. - 
Corrollary 4-3 : 

i) - if aoa-a, then = 0, and ,9+@ = 1 

ii) if the structure is commutative, then f = c= 1 

iii) if it is both commutative and associative, then P = $= 1 ,and h=0 

In the last case we have extensive measurement (set y =  y+A), 1n 
the first case we have the weighted mean interpretation. The proof Of 

the theorem can be carried out by reducing it to the twodimensional 

additive conjoint case. 



Define 

The various axioms of theorem 4.2 must be proved. We es tab l i sh  double 

cancellation as an example: suppose (a,x) >,(f ,q) and ( f  ,p) >, (b,x), then 

by de f in i t i o r  aoxhfoq and fop>,box. Now consider 

I t  follows by monotonicity and t r a n s i t i v i t y  of 3 th*; ';sop) k (boq ) ,  

hense (a,p) >, (b, q). The proof of t r i p l e  cancelliztioxi ie somewhat more 

complicated, but similar.  The most d i f f i c u l t  par t  ia $6 derive the  sol- 

vab i l i  ty sad Archimedean conditions from thc topological axioms ( i i i )  

and iv) .  This can be done. 

6. Conditional Expected Y t i l i t y  Theorx 

Expected u t i l i t y  theories attempt t o  d e ~ c r i b e  the behavior of a r a t i ona l  

deoision maker when confronted with choices among uncertain prospects. 

The principal  primitive notions are  "event" and Nconsequencell. An "un- 

cer ta in  prospectI1 or  l1gambleI1 consists  of a f i n i t e  number of chance 

events, say el,...en, and a consequence associated with each event, de- 

noted by cl,...,cn. Expected u t i l i t y  theories construct two real-valued 

functions: a u t i l i t y  function u that maps the s e t  of consequences in to  

the r ea l s  and a probability measure P t ha t  i s  defined on the events. The 

expected u t i l i t y  EU is  computed by taking expectationsr 

and it orders gambles i n  the same way as do.the preferences of the  ra- 

t i ona l  decisipn maker. 

The f i r s t  modern discussion of expected u t i l i t y  theory i s  i n  an appendix 

of the  1947 edit ion of Von Neumann md Morgensternls c lass ic  book. They 

were concerned with simple gambles i n  which consequence 2 a r i s e s  with 

probabil i ty p and consequence with probabil i ty 1-p. The probabilities 
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were assumed t o  be give2 i n  a numerical form, Such a gamble can be wr i t t ea  

as apb. Von Meumann =d Morg?nste~n a lso  introduced a compounding operation 

that makes i t  possible t o  construct more complicated gamblen, such as 

( a ~ b ) ~ c ,  from simple ones. They axiomatized an ordering >, over simple 

gambles and simple compounds of them. The axioms they introduced garanteed 

t he  existence of an o rder -p rebe~ng  numerical expected u t i l i 5 y  funutiox. 

The construction of t h i s  function depended on the numerical values 3f the 

object ive probabi l i t ies ,  which obviously meas  t h a t  t h e i r  procedure i s  

not an examp12 of fundamental measurement. Blackwell and Girshick, 

Samuelson, and others  generalized t h i s  approach t o  n-component gambles 

(cf .  Luco rn3. i iaiffa ,  1957). A much deeper general izat ion w a s  provided by 

Savage (1954!, who completely dropped the objective probabil i ty assumptiox. 

He in~roduced  axioms t h a t  a re  su f f i c i en t  f o r  the  existence of both a sub- 

j ec t ive  probabil i ty measure P and a u t i l i t y  u with the  property t h a t  a 

gamble f is  preferred t o  a gamble g if and only i f  the subjective expected 

u t i l i t y  of t i s  g r ea t e r  than the  subject ive expected u t i l i t y  of g. Savage's 

theory i s  vcry general, but as  we s h a l l  see it has cer ta in  unnatural 

fea tures .  

Another l i n e  of developaent was i n i t i a t e d  by the  philosopher Ramsey (?931) 

whose idedr, were worked out i n  d e t a i l  by Suppes and his collaboratoro (cf .  

Davjduon sad Suppes, 1956). The main difference from Savage's approach i s  

that Rampex f i x t  constructed a u t i l i t y  function, from which a probabil i ty 

function i s  C h e ~  developed; whereas, Savage begs with axioms suf f i c ien t  

f o r  tha existence of a (subject ive)  probabil i ty measure, and he then Ae- 

f ined u t i l i t i e s  i n  terms of these p robab i l i t i e s  ( a s  Von Neumann and Morgen- 

s t e r n  d id  i n  terms of objective p robab i l i t i e s ) .  The Ramsey-Suppes-Davidson- 

Winet approach i s  s t i l l  r e s t r i c t e d  t o  very simple, two-component gambles 

with independent events. Pfanzagl ( 1967) generalized this i n  such a way 

t h a t  compounding of non-independent events became possible. A s t i l l  more 

general treatment of the problem i s  given by Luce and Krantz (1968). Not 

only does t h e i r  axiom system cover general gambles as  well, but a more 

general representat ion is  obtained which a l so  generalizes some ideas of 

Jeffrey.  Sck.ematically t h i s  h i s t o r i c a l  discussion may be summarized as 

follows: 

Von Neumann & Morgenstern 
__C_ 

Blackwell & Girshick Ramsey 
Samuelson I 

I 
Savage 

I 
Suppes e t  al .  

I 
Pf&zagl Jeffrey 
\ 

Lute & Krantz 



In comparing Savage's statistical decieion theory with the &uce-~rantz 

conditional theory, it is important to recognize that in moat cases of 

pra3tical interest people think in a conditional way. If you wan-t;-to 

decide whetker to go to Paris by plane or by car, for example, the reason- 

ing is typically oonditional. When considering the events that can arise 

when going by car, the fact that the plane inw crash is simply not relevant, 
It ic, of course, when considering the possible eve~ts associated with 

the flight. Moreover, the unconditional formulation of decision theory 

in the Savage-approach is highly inefficient. Consider the following simple 

example, in which there are two gambles: the first one is the throw of a 

die (D) 

The second 'one is the throw of a coin (c) 

event 

consequence 

event Head Tail 

comequence -1 0 

I 

1 2 3 4 5 6 

-3 -2 -1 1 2 3 
d 

In the Savage formulation we must consider the complete cartesian pzoduct 

of states of nature and list all outcomes. 

In the conditional formulation, we list all possible consequences and for 

each decision list the events that cause each to arises 

Of course the information in these two sohemes is the same, but evidently 

the Savage notation is the more redundant, even in &is simple example. 
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That the two approaches can be translated into each other in the finite 

case may not be clear at first siqht. To show it, we first list the primi- 

tives of the statistical approach: a set 3 of states of nature, a set 7. 
of consequences, and map2ings of the form f: 4 -+T. Yhe representation 

involves two functions, a utility u: T+Re and a probability Q: 

3 + 0 I ,  and subjective expected utility is defined as Z uE(si)]~(si). 
i 

The summation is over all states of nature. 

In the conditional approach, the primitives are a set X, en algebra & 
of subsets of X, a set of consequences r, and mappings fA: A --+T for 

A 6 L. The representation yields u: T-Re, and P: &+L0,11, and the 

expected utility is defined as zu(ci)P Cf;;'(ci) (A], where the summation 

is over all consequences. The translation of the statistical theory into 
5 the conditional is trivial: define X = 5 ; t = 2 ; fX = f; P 5 Q; ?and 

u = U. The translation from the conditional to t3e statistical theory is 

less obvious. Define 5 = 77- Ai; Q(S~) = TT k(sf) I P(A.)], where 

s, e 3,  i.e. Ai6 t A 
A 

1 si = (Sip ..., a & 1 si, . . . , si) ; f (si) = fA(si) whero is the index such thct 

A 1  = A; and u = u. One then shows that the latter expectation implies the 

former . 
The primitives of the Luce-Krantz axiomatisation are as follows. First, 

we have an algebra of subsets & of some abstract set X. Moreover, a sub- 

set 7 = & must be characterized by the axioms. Intuitively, the elements 
of 37 can be thought of as those events that are judged as having no 
probability of occurring. We condition only on events in & - 7 to avoid 
division by 0 in the representation. Again denotes the set of con- 

szquences. The decisions are a set of f'unctions 0 5  {fAlfA: A+Z, 
A C k - T( ) . Pinally we have 3 biaary relation >, on . Decisions can 
be compounded in the foll~wing way: if AnB = 9, A,B 6 L -?, fA,gB E f )  
then fA v gB(x) = def (z[$ If B f A and B G L - 7 , then (fA)B 

if x&B 
denotes the restriction of fA to the set Bo The axiom of a conditional 

decision structure can now be stated as follows. 

Por allA, BEL-77, fA, fA, gB € a  
i) a.AnB=$ * f A d g B € a  

b. B CA I (fAIB E 

i )  . , } is a reafiy ordered set. 

iii) Ana = $ A f A ~ g B  =+ fAugB~fA. 



This laat axiom bears m obvious resemblance to the monotonioity condition 

in extewive measurement ( ;+'. seotion 1, axiom vi) . Moreover, the famous 
sure-thing principle iq t, special case of axiom iv. The sure-'lhing prin- 

aiple asserts that if for eacb possible outcome the consequence of gamkle 

f is preferred or indifferent to the consequence of gamble g and for at 

least one outcome it is strictly preferred, then gamble f will be pre- 

ferred to gamble g. 

For ouzl next &om we need the following definition: a sequenae 

{f A (i) ) fii) t B , i E l] is called a etandard sequence if 3 B e L - 
3 A Q B  = d A ~ ~ $ o ) ,  g$l) 6 D 3 i , i + ~ e ~ ,  i~i)ug$l)-i~+l)ug$~). 

The Archimedean axiou is as usual: 

every bcunded standard sequence is finite. 

Moreover, we use the notion of a standard sequence inr 

Our next axiom characterizes the set I)i, .  

The next adom is a non-triviality assumption. 

vlil) a. k. - 7i) has at least three pairrise disjoint elements. 

b. fl/- &g at least two e~uivalence claases, 

The final axiom is similar to the solvability a;doms that we have pre- 

vioualy used in the other measurement models. Suppose that A,B b -?, 

ir) a. 3 hAe 2 3 hAwgB. 

b e  A n B  6 5 f A v B  - 
hA "gg 'VfA UB* 

Clearly the firat part of axiom ix) is a f o m  02 unrestricted solvability, 

and this is one part of the axiom ayate~thatwc would reaily like to 
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weaken. Surprisingly enolt,?hJ the second part of axiom ix) is independe3t 

of the first part, although it is rather. like the restricted ~olvability 

assumption we made in acieifiva c~ajoii.ii21 measurement. 

Theorem 5.1 : f (x, k.., 1 .c, ?),a) natisiies a x i o m  i)-ix). then there 

exist functions u: -- a d  Y: L+l~,i] s h  that, for all fA,gg~a, 

a. ( X, ,I) la a 'initeiy additive probability space. 

b. R E 7 -  P(B) = O. 

if An B = j7fS then u(fA u = U(~~)P(A/A VB) -:. U(~~)P(BIA UB). - - 
e, P is unique, and u is unique up to a pasitive linear transfor- 

mation. 

There are some important differences from Savage's result. In the first 

place, the utility function is not defri.ned on the set of consequences. 

As a matter of faci, we could even do vrithout Tslnce the axiom nowhere 

refer to r e  Part d.  of theorem 5.1 does not say tkat u is an expectation 

in the statistical sense; it has a major property of an expectation, but 

only under very special conditions is it actually one. The infiniteness of 

Savage's system is explicitly built into the set of states. The infinite- 

ness of the Luce-Kranta system is in the aeti%ecisions, but not necessarily 

in A ;  the algebra of subsets L is only specified to be non-empty. A 
serious weakness in the statistical ap~roach is the essential role in the 

construction of u and P that is played by constant decisions, i.e. decisions 

thaehx&e same consequence independent o f  the state of nature. Constant 
A 

decisions may be realizable in aimple situa~ions, but they are very un- 

reaiistic in realistic settings. It car, be shown that there is a reali- 

zation of tha Luce-Krantz system in which there are no constant decisions. 

Yo get a utili5y function over 7 ,  let cA denote the constant decision 
with f4(x) = c for all x € A .  If we add the following assumptions, 

0 xi) E jd =i c B , - ~ 3  

to axioms i)-ix), then it follows that there exists v: f i  +Re such that 

for any gamble f A e D ,  u(fA) = E k(fA) 1 A] , where E  denote^ taking 
expuctations. A gamble is a decision with a finite image and for u €r  



fgl(c) E k.~ote that assumption x! is trivially true if, for example, 

the toss of a coin is incl~~ded ir L ; it is much weaker than assuming 
that all constant decisirms are in . Another important case, not ad- 
missible under Savage's axioms: is where the utility of e decision has 

contributions from both the consequences and the conditioning event. 

For example, suppose that w: L * Re is such that for A nB = f, 
~ ( A U B )  = w(A)P(A ( A  UB) + W(B)P(~ 1 A UB), an8 v: 7+Re, then a 

utility for gambles may be defined as u(fA) = E [v(fA) 1 A] + W(A) . 
This more realistic model, which can be interpreted a9 admitting 

utility-f or-gambling, is consistent with axiom i)-x) but, of course, 

not with xi) except when w 0. 

Savage's acthod of proof was to obtain subjective probabilities, from 

which he constructed the utility function along the lines of Von Netlmnnn 

and Morgensternls proof. In our approach P and u come out simultaneously. 

We briefly sketch the nature of t\e proof. Take an arbitrary non-null 

event A and partition it into con-null sets Ai, i=l, ..., rim Let aAi 
denote the subset of a whose elements are defined on Ai. Define 

It is possible to show that in (q nAi, al) the axioms of n-dimensional 

conjoint measurement are satisfied (if nr2 we have -Lo ke careful, but start- 

ing witb a Lore refined partitioning of A makos n 2 3 again). Theref ore 

{ : TAi -+ Re, and these functions are, of course, order-preserving and 
unique up to positive linear transformations. A different partitioning 

defines other functions, but they uan be shown to be of the same family. 

We have to ~ick r ywtioular one* if f(l) > f('), then for any A there 
0)-f exist gll).rf(l) and gi (01. Zero and unit are e~tablished by picking uA 

so that ~ ~ ( ~ 1 ~ : )  = 0 and uA(gil)) = 1. For any aA, this defines a unique uA. 
And because a is the union of the aA, lef u on a be the union of all 
these AmcZions. For AnB .; , we have 

1l(fAugB) yA(fA) + yB(gB) ' P(A~A UB)E(~~) + PA 9 B ' ~ ( 3 1 ~  uB)u(gB) + BB,A, 

where pA(fA) = P(A1 A uB)r?(fA) + JA,B is simply the linear transformation 
that relatss (fA(fA) and u(fA) = uA(fA). It remains to be proved, that the 

P-valusb ar2 conthtl.ona1 probabilities, that BBgA + PA,B = 0, and that u is 
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order-preserving. Since giO)- f , we a l s o  have v giO)-f( 01, 
- SO U ( ~ ~ O ) U ~ $ O ) )  = 0 = + + PATB + P P Y A  - 

o + o + p  
A,B + PB,A By using the g(l)-elements i n  a similar way, we 

e s t a b l i s h  thct the P ' s  a r e  condit ional  probabi l i t ies .  The proof t h a t  u  i s  

order-preserving i s  ra the r  d i f f i c u l t .  

Although t h i s  i s  perhaps the  m o t  s a t i s f a c t o r y  e x i s t i n ~ ,  axiomatization 

of subject ive expected uti.'-.i ty ,  some improve~uents a r e  c l ea r ly  poss!.blc. 

P i r s t  axi3m i x )  is :rather s t rong;  we especia l ly  mould l i k e  t o  weaken 

p a r t  a).  Secon4, some da ta  and examples suggest that the sure-thing prin- 

c i p l e  is  1c5 a very good description of a c t u a l  decis ion making (although 

i t  c e 3 a i n l y  seems r a t i o n a l  t o  n v y  people, though not t o  a l l ) .  And 

f i n a l l y ,  i n  t h s  algebra k , a i l  events a r e  t r ea ted  aa equally real-izsble? 

andi2xaj-  be usa fu l  to  p a r t i t i o n  L i n t o  those t h a t  a r e  r e a l i z a b l e  axd 

thoso tiu,t a r e  o ~ l y  f o r  mathexxitical purposes. Por example, the  sub- 

events of r. $ L a c  i-?iqht and of c car  t r i p  seem more na tu ra l  conditionFng 

events f o r  decis? oiL;3 (-;idL does, say, The event plane a r r i v e s  7 hrs. l a t e ,  i 
auto az?5ves on kine j. T'II peculj.ar s t ruc tu re  of L, i n  which a l l  events 

a r e  t r e a t e d  a l ike ,  m y  etren be r e l a t e d  -i;@ the  violaSions of the sure-thing 

pr inc ip le .  

Concludiug Note 

I n  these l e c t u r e s  w e  have djscussed a nl1xber of d i f f e r e n t  examples of 

fundamental msasurement. They a r e  summarized i.a the following diagram, i n  

which $he reduct ions u ~ e d  t o  prove the  reprasenta t ion  and uniqueness 

theorems a r e  indicated by arrows. 

condi t ional  expected u t i l i t y  theory 
C 

n-dimensional addi t ive  conjoint measurement 

J. 
bisymmetry s t r u c t u r e s  -> 24imensional  add i t ive  conjoint measurement 

4 
conditionc.1 p robab i l i ty  - pos i t ive  d i f ference  s t ruc tu res  

i 
u n c o n d i t i ~ n a l  probabi l i ty  --, extensive s t ruc tu res  

This i s  not the  only possib?-c hierarchy of axion systems. Pfanzagl, f o r  

example, reduces a l l  systems he i r v e s t i g a t e s  t o  bisymmetry s t ruc tures .  
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