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ReD. Luce: ALGEBRAIC SYSTEMS OF MEASUREMENT

(svumerized by J. de Leeuw)

-

1. Extensive leasuremsnit

The major problem of tie foundations of measurement is to find
axiomatic systems that permit the construction of homomorphic mapvings
of a given empirical relational system, which satisfies the axioms,
into an appropriate numerical system, which also satisfies the exioms.
In these lectures, the numerical system will always be a subset of the
eet of real rnumbers, Re.0Of course, such empirical relatioral systens
are of scientific interest only if there is at least one interpretation
for which the axiome are (approximate) enmpirical laws. In tnose cases,
the numerical reprecertation summarizes these laws in a way that it
is easy both to remember and to maliv valid deductions. The simplest
structure for which measurement-theoretical considerations are possible
is the system { A, » , whers A is an arbitrary set and » is some
ordering relation. We shall suppose that » is a weak order, i.e. >

satisfies
i) for all x € 4, x 2 = (reflexivity)

ii) for all x, v, 2 € &, if x » y and y » z, then x » z (transitivity)
iii) for &ll X, Yy € Ay, either x 2 y or y 2 x or both (connectedness)
In the usual way, define the strict orderinz > by

x >y iff x »y and not (y ».¥),
and the indifference relation ~~ by

X~y iff x » y and ¥ » X.

It is easily shown that » is a strict simple order and thatew is an
equivalence relation when » 1is a weak order. The representatior . theorem
for a weak ordering answers the gquestion: under what conditions is

there 2 homomorphic mapping of A into a subset of Re? To formulate the
answer, we need the following definition: a subset B of a set A is

called order~dense in A if for all x, y € A and ¢B, there exists an

element b € 3, such that x 2 b 2 y. Then the answer is given by the
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Cantor-Birkhoff theorem:

Theorem 1.1: Suppose that (A, L>,> is a weak ordered structure.

There exists a function f, chat maps A into Re qorotonically, i.e.,
x>y iff f£(x)» £(y), =Zor all x, y € 4,

iff A contains a countable order-dense subse-t.

A sketch of a proof of this representation theorem can be found in
Birkhof? (1967, p. 200; it is rot quite correct: B must include the
erd points of all gaps). The most familiar example of ‘a countable
order-dense subset is, of course, the set of rationai numbers con-
gidered as a subset of the reals. The uniqueness <thzorem for the

case under consideration is as follows:

Theorem 1.2¢ If £ and f' are both homomoiphisms of (4,2 > into the

reals, then there is a strictly monotonic increasing numerical

function ¥ such that £ = Y¥(£'), i.e., the representation forms an

ordinal scale.

This uniqueness theorem shows that a numerical representation of
<A,2> has a considerable lack of invariance. Scientifically this
i$ sa obvious disadvantage (it renders classical wnalytic techniques
neerly useless) and that makes systems of this sirp] icity of little
interesv. In general, however, the data include more information

than ju+t g weak oracring of an abstract set. By using this additional
informavion, we attempt to strengthen the invariance of the repizsen-
ta:tion.

) Qur first example of addad structure is the inftroducticn of a
binary operation, written as o. The theory of such systemxs (A,) ’ o)
is called extensive measurement. The empirical situation ic familiar
from and 1mporte.nt Tor phys:Lco. We have a set of objects A; these
objects can be compared with each other, and they can be concatenated.
Examples are length, mass, and ftime., In the measurement of mass we
can put two different objects x and y in the pans of a pan balance
(in a vacuum) and zstablish,’ by notinz which, if either, pan drops,
whether x > y, ¥ » x or x~ y. Moreover, we can put two different

objects x and y in the same pan and study their combined effect, xoy.
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Although the direct significance of extensive .zeasurement for psy-
chology is limited, the mathematics invoived is fundamental for all
other nmeasurement systems.

In classical theories of extensive measurement, it is assumed that

the system is closed under the binary operaiion o, i.ee.
if x,y € A, then xcy, yox € A,

In prectice, however, unrestricted concatenatioa causes trouble

(it would, for example, resuli in the ultimate destruction of any
pan balance). Observe, worcover, that in probabiiity theory we have
ﬁ(A\JB) = p(4) + p(B) when, and only when, A and B are disjoint
eventc. This means that union of disjoint sets is very much like
~concatenation, but clearly usrestricted concatenstiorn (unions) is

not acceptabvle. To overcome taese objections, we add to th? gysvem

a set (reiation) B that tormulates tha restrictions on concatenation.
B is a subset of A x A. Verdally, w= interpret (x,y) € B to mean that
x and y can be concatenated.

The axioms for (generalized) extensive ressuremeni are the following:

i) <A, >,> is g veakly ordered set

i1) BE€AxA and 3#f
iii) o : B-»A
iv) if (x,y) € B and x » x' and y » y', then (x',y') € B

v) if (x,y) € B, (xoy,z) € B, then (y,z) € B and (x,yoz) € B and

(x0y) 0z »A x0(yo0z)

vi) if x » y and (x,2z) € B, then xoz » yoz and zox )} zoy

Observe, that, by the third axiom, the system is closed under o iff
B=A x A. Axiom iv) forces a certain structure on the system, one

that is piausible both for probability and for mass. I. the latter
case, it says: if two weights don't break the balance, then two lesser
weights won't either. Axiom v) asserts that the operation o is
,associativé provided that the relevant elements can be combined at all,
and axiom_vi) shows that the ordering is compatible with “the operation
0. A system <A,B, »,0) that satisfies axioms i)-vi) is called a
weakly-ordered local semigroup. 3uch a semigroup is called Eqsitive

if, in addition to i)=-vi), we have

vii) for all (x,y) € By, x0y > x and xoy » Ve
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It is called solvable if in addition

viii) if x > y, then there exists a z € A, with (y,z) € B and xayoz.

Finally, in most measurement systems, we need an Archimedean axionm.

This axiom is named after a property of the real numbers: if 1t is

the set of positive integers and if a@,p are positive reals, then the
set {n | nelt and ﬁ;na} is finite. To use a similar axiom in our
context we need the notion of n copies of an element of A. We define

nx by induction:

a) ix = x, ‘
b) if (n-1)x € 4 and ((n-1)x) € B, then nx = (n-1)xox,

and we state the Archimedean axiom as follows:

ix) for all x,7 € A, the set .{n | ne I*, nx is defined and

¥ 2 nx } is finite.

Now we can state the representation and uniqueness theorems for

extensive measurement with restricted concatenation.

Theorem 1.3%3: If <A,B, 2 ,o) is a positive, solvable, Archimedean,

weakly-ordered local semigroup, then there exists a function £ from
A into Re', such that

i) x 3y y iff £2(x) > 2(y),

ii) if (x,y) € B, then £xoy) = £(x) + £(y),

iii) if £' is another function that satisfies i) and ii), then thnere

exists a positive number a such that for all nonmaximal elements

x in A, £(x) = af'(x). (An element x of A is maximal if x 2y
for all y € AL)

Axioms i)-ix) can be classed in two groups. In the first, we have
those that are necessary in terms of the representation. They simply
£21llow from the fact that a representation with the properties
mentioned in the theorem exists. This group includes axioms i), v),
vi), vii) and ix). The second group of non-necessary properties are

called structural conditions; they are only sufficient and not

necessary for the representation to existe. This group includes the

axioms ii), iii), and iv) that describe the structure of the set B,

S e
<o
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and the solvability axionm viii) that asserts that certain equations
can be solved.

Whether or not these axioms can and/or must be tested empirically
is a subtle problem. In physics the solvability axiom viii), the
positivity axiom vii), and the weak order axiom i) are assumed to
holé for idealized measuring instruments and an idealized set of
objects. Violations are ascribed to friction of the pan balance and
other imperfections of the empirical situation. In psychology, the
violations of axiom i) may be more serious, because we do not always
have a clear idea of what "ideal" wonld mean. Intransitivity of
preference and, especially, of indifference are common phenomena.

One would like to have a suitable statistical model to test hypotheses
and to assess the seriousness of these violations, but in the area of
fundamental measurement problems no satisfactory statistical proce-
dures are now available.

Theorgn 13 is a generalization of a classical theorem of H@lder:

An Archimedean simply ordered group is isomorphic to a subset of the

additive reals. In this case o is assumed to be a closed group

operation, i.e. B=Ax A, 0 is associative, and identity and in-
verses exist. The existence of inverses meales the solvability axiom
viii) unnecessary, since x = yo(y-1ox). We retain the important
"ecompatibility" axiom vi) and also the Archimedean axiom ix).

A proof of Theorem 1.3 follows these lines: for x,y € A, let
¥(x,y) be the largest integer for which both I(x,y)x is defined anc
y2 N(x,y)x. Such an integer exists by the Archimedean axiom. Ve
distinguish two cases. In the first, A has a leasti element, Xqr
relative to the given order 2 . It }s easily ;hown that yW~Jh(xo,y)xo
or, in words, y can be exactly reached by concatenating a finite
number of copies of X g In this case, set f(y) = H(xo,y), and it can
be shown without great difficulty to have the desired representation
propertiess In the second case, we assume that A has no least element.
With x fixed and y,z € A, consider. the ratio N(x,y)/N(x,z). The
numerator tells how many copies of x are approximately equal to y,
and the denominator tells the same thing for z. If we take x smaller
- and smaller, which is possible since, by hypothesis, tﬁere is no
least element, the approximations to y and z become better and betters
In fact, it can be proved (by standard inequality techniques) that the

relevant limit exists, and we define
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)

£ ( H(x,5
Y) Li ( rJ

im .
f(x) _I¢ N(x,z)

The resulting mapping f is then shown to have the asserted properties,
with axiom vi) playing a most important role. An important feature-
of this constructive proof is the use of a scandard series, which
consists of the set of integral multiples of a certain "small®
- element, to approximate other elements. Whenever we use Holder-

type methods of proving representation thecrems, such standard
series arise. Moreover they provide a practical constructive method
for finding numerical renresentations.

Another practical method to obtain representations from a finite
sample of data uses results concerning systems of linear inequalities,
If there is an order preserving, additive mapping £ of & finite sei

A into the reals, thern for all XyYsUyV € A, wWe have
X0y ),uov iff £(x) + f(y) 2> £(u) + f(v).

Each inequality in the data structure defines a numerical inequality
that is satisfied if the additive representation is valid. Clearly
<-A, 2 o) has such a representation in the reals only if. the systen
of inequalities, defined by the ordefing in the data structure, has

at least one solution. An extensive literature exists on the solution,
uniqueness, and algorithmic aspects of the problem of systems of

linear inequalities.

2. Qualitative Probability

In provability theory the principal primitive notion is that of an

'event! usually interpreted to be a subset of the universal set or

sample space X. To cope effectively with infinite sample spaces, it

has proved necessary to festrict the system of events so as not to
include all subsets of X. Specifically, we confine ourselves to a
non-empty systenm E,of subsets of X that satisfies the following

conditions:

i) if A €& , thenX ek ;

ii) if A,8€ & , then AUB & .
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Such a system is called an algebra of subsets. It follows from i)
end ii) and non-emptiness, that X = AVX eb a.nd so by 1), p= Te t/
moreover, if A,BE€ E then A/\Bebsince ANG = KUB. If the unions

of countable collections of events are also events, 25 is called a
og-algebra.

A (flnltelj addltlve) probability space is defined to be a triple

.<X, ,P) y for which E; is an algebra of subsets of X,P is a measure
from EL into Re, i.e., for all A,B € Ez,

i) P(4) 20

ii) if ANB = @ then P(AVB) = P(A) + P(B);
and P is a probébilitz negsure in the sense that also
iii) 2(x) =

This definition of a probability space and the intefpretation of -
probability as a measure is due to Kolmogorov (1933).

The question "what is probability?" has given rise fo controversies
among freqafntlsts, objectivists, Bayesians, subjectivists, logicists,
etcetera. I feel that the questlon is of no different character Trom
any other measurement question, such as "what is mass?". Indeed, one
can imagine equally heated debates over the answer to that question,
although they have not actually occurred. Alternatively, perhaps the
arguments about probability are misplaced and it, too, should be
treated as another problem of fundamental measurement. The contro-
versies are due to the fact that whenever relative frequencies camnot
be used, the most common measuring instruwent in probability measure-
ment is the all too variable human beinp.

The formal measurement problem of finding necessary and sufficient
conditions for the existence ¢f an order-preserving mapping of a
system (X, E,,,)) into a probability space (X, t, P) requires the
existence of a weak ordering, ) , 0f qualitative probability on
Some ways in which this weak 6rder1ng of events can be obtained give
rise to terms such as "subjective" or "intuitive" probability. These
terms may prove misleading because they suggest an iunherent sub-
jectivism which, in fact, probably only reflecis the present state of
the art. The ways to assess 2 may alter with the development of the
science, just.as it has with other measurements. At one time the ohly

instrument for compariung the mass of different objects must Lave been -
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the human being. Gradually, men was replaced by more satisfactory
- more consistent, reliable, precise - instruments, such as the pan
balance, the carefully subdivided ruler, etc. So far in probability
measurement, no really adequate instruments have been devised except
when events are highly repeatable or when certain types of arguments
based on physical symmetry are possible.

Observe that there already is a Fair amounx of structure in the
systenm (X, &, )) . Besides )> being a weak order, we have assuned

that_zi is an algebra of subsets. We stert our axiomatization with

de Pinetti's (1937) requirements for % gqualitative probability struc-

ture: .

i) ) is a weak order over &,

ii) A 2 Ofor all Ae& , and X>p,

111) for all A,B,C,D& & , if ANB = f, CND = f and A~C, then

LG st

B2D iff AVB 2 CUD.

The conditions are clearly necessary for the existence of sthe re-

quired numerical probability measure, but they are not sufffcient.

This was proved by Kraft, Pratt and Seidenberg (1959), who comstructed

the following ingeneous counter-example. )
Suppose that X is the five-element set {a,b,c,d,e} s and Ea==2X

(= set of all subsets of X). We first note that if 3 is a qualita-

tive probability for which there is a representation, then from

{a} > {b,d}
) > {oe}
\{b,e} > {a,d}

{c,e} > a,b.,d} .

The proof is very easy. Replace the three inequalities by their

it follows that

numerical analogues in the representation, e.ge, {a} _){b,d} by
2( {a} ) > B( {b} ) + 2( {a}). Add these three inequalities and

cancel the same terms from both sides of the resulting inequality.
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This yields P({c}) + P({e}) > P({a}) + P({b}) + P({d}), from which
{c,e} S {a,b,d} follows.

Now suppose that we have some measure for which these four in-
equalities-hold and for which there is no set A € b with P(A) between
P({c,e}) and P({a,b,d}). For example, with 0< & <1/3, it is easy to
see that the following measure will do: '

P({a})
P({v})
B({c})
P({d})
P({e})

(4 - £)/(16 - 3E),

(1 -.€)(16 -3¢),

2/(16 - 3€),

(3 - £€)/(16 ~3€),
6/(16 - 3 E).

Since the ordering 2> induced by P satisfies the axioms of qualitative
probability, so do those of >% which is obtained from 'a by keeping
everything else the same except {a,b,d}' 2% {c,e}. Obviously, >#%
does not have a numerical representation since it violates the above
four inequalities.

This makes it clear that more is needed to prove a representation
theorems. One of the things that we need is an Archimedean axiom
(though it is not enough, since it is satisfied in any finite system
such as the Kraft et al. example), To formulate this, we need the
following definition:

A sequence of events A1, seny Ai, ees € E« is called a standard

sequence relative to A if there exist B;,Cj € E/, i=1y, 25 eeeey SUch
that .

i) Aq = By and By~4

i1) By NcCy = ¢
iii) By A4

iv) Ci~A

V) Ai+1 = BlUCi.
This inductive definition does not make the system unbounded since,
for each Aj, we still have X > A;. We state the Archimedean axiom as:

iv) For each A >0, any standard sequence relative to A is finite.

We can now continue in one of two quite different ways. The first,
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due to Scott (1964), is to state necessary and sufficient con-
ditions for the finite case by using the linear inequality téchnique
mentioned in the previous section on extensive measurement. The
other, followed by Koopman (1940a, 1940b, 1941), de Findtti (1937),
Savage (1954), and Luce (1967), involves simpler sufficient condi-
tions but includes a rather sitrong existence (solvability) axiom.
The first three authors postulated that there are partitions of X

into arbitrarily many equiprobable events. The latter used instead:

v) for all A,B,C,D€ b y if ANB = ﬁ, A>C and B2D, then there
exist C',D',E et s Such that

a) E~AUB,
b) C'ND' = g,
c) E2C' and E2D',

d) C'~C and D'~D.

This axiom postulates the existence éomewhére élse in the space of
disjoint, probability~#juivalent copies of the not necessary disjoint
sets C and D. Moreover, thesé copies are included in a cgpy of the
union of.two other disjoint sets A apd B that are more probable than
C and D, Axioms i)-v) together are sufficient for the existence of a
probability measure. One. proof first introduces a restricted con-
catenation operation as follows: If X denotes the equivalencé class
containing A, then let L

B ={E5) | a>g, B>g, ana Jarek, BreFoarnn =g},

When both A and B are very probable, they cannot be concatenated
because no pair of events indifferent to the (A,B) pair will be dis~

jointe. We now define the concatenation operation

(o} :/G*—-)é,/rv
by '

~ A ~~/

A oB = A'UB'.

By the definition of jB y concatenation is restricted, eésentially,

1o disjoint events.

Theorem 2.1: It <X, E,, ?> satisfies axiom i)-—v),- then <L/~,£, }, o>
is an extensive system.(i.e. a positive, solvable, ArChimedean,'weaklx::

ordered local semigroup).
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Surprisingly enough, the only tricky part of the proof is %o show
associativityf It follows immediately from Theorem 1.3 that a measure
P exists, and by Axiom ii) we may choose its unit so that P(X) = 1.
Thus P is unique. An extension of this theory to a weak ordering of
conditional events, i.e. of the form A| B2 Cl D, can be found in
Luce (1968). The big problem there is that we must construct both the’
multiplicative structure inherent in the conditional probability re=

presentation, i.e.,

p(anB) o p(OAD) _ (5 (D) ireal|B 3 c|D, (1)
p(B)

p(a]B) = )

and, at the same time, the usual additivity of probability, i.e.,
p(AUB) = p(4) + p(B), if ANB = g, (2)

Additivity is established by showing that the orcering induced by

AIX ;B,X on é, satisfies the above unconditional axioms. The condi-
tional axioms are also shown io lead, via extensive measurement
theory, to a representation satisfying eq. (1) which is unique up

to & positive power. The main difficulty in the proof is to show that
the probability of eq. (2) is the same as one of the family satisfying

€qe (1). Techniques of functional equations are used to show this.

3« Positive Difference Structures

A possibie task for measurement theoreticians in the behavioral
sciences is to try to reduce the natural formulation of their pro=-
blems to cases of extensive measurement. A useful trick, it turns
out, is to reduce them to the special case of extensive measurement

known as positive difference structures. These structures can best

be exemplified by an axiomatization of length measured on a long
(possibly infinite) ruler.

If we compare length with mass, one of the main differences not
captured by extensive measurement is the fact that length is naturally
isomorphic with intervals on the real line. Intervals can be charac-
terized by their endpoints, and the concatenation of adjacent inter-
vals is especially natural: ab o bc = ace. The concatenation of non-
adjacent intervals, such as ab and cd, has no comparable direct
definition and one of our problems is to formulate an indirect one.

Bach interval can be identified in ftwo ways: as ab and as ba. There
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is, however, a natural interpretation of direction, which leads %o
calling one s positive interval and the other negative. We will
attend only to a subset, which will be called A*, of the positive

intervals,

The primitives for our axiom system are an abstract set A, a set
A¥CcA x A, which will be axiomatized in such a way as to be inter-
preted as a set of positive intervals, and >, an ordering on A¥,

ieee 2 subset of A x A x A x A, The axioms are:

i) <A*,)> is a weakly ordered set;

ii) if ab, be, a'b'y b'e' € A¥ and if abpa'b' and be > blo', then |
a) ac, a'c! € A*, and
b) ac >.a'e';

1ii) if ab, bc € A¥ then ac > ab, bc;

iv) if ab, cd € A* and ab > cd, then 30', d' ¢ Adad'~c'bascd,

v) for all sb, be, ab', b'c € A*, if ab~Db'c, then ab'~ be.

Axionms ii)-—v) have a very simple interpretation in terms of length,
and car be illustrated by drawing a line with the relevant points on

it. In such a structure, a sequence B4y seey 2 eee € A with

19
(ai+1’ ai)éA*, for all i, is called a standard sequence iff there

exists an abé€ A* such that a.

1+1ai~ab for each i.

vi) If {ai} is a svandard sequence, then {n'ne 1t, ca > apaq is finite
(Archimedean axiom),

We now define

B = {(a%,'c‘&)l ]a',b',c' € A da'b,blc' € A A ab~alp! Achb'c'}
And if {ab,cd) € B, then ab o cd = a'c'.

Theorem 3.1: If <A,A*,)> satisfies axions i)=vi), then

<A* |N, By 2, o> is an extensive system, provided that there
exist ab, cd € A* such that ab>cd.
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Corrollary 3.2: There exists a real—valued, order vpreserving marping

yy_gg A*Fuwhich is unigue up to multiplication by a positive real

number,

Corrollary 3.3: 1If a,b €A, if not acabc for all c €A, and if for all

ayby € A¥either abe A* or baeA*, then there exists a function

(P: A -—>Re, such that

y(ap) = P(a) - p(b);

moreover, ?7 is unique up to a positive linear transformation.

4, Additive Conjoint Measurement

For most attributes of interest in the behavioral sciences no
natural concatenation operation is available. This means that the
direet use of extensive measurement is impossible. If we accept
NeR. Campbell's dictum "fundamental measurement = extensive measure-~
ment", then fundamental measurement is impossible in the behavicral
sclences. This conclusion was reached after careful deliberation by
the members (among them Campbell) of a British committee who inves-
tigated the possibility of measurement in psychologye. It has proved
far too pessimistic and premature since, in recent years, a number
of quite different, but equally fundamental, systems have been pro-
posed, among them conjoint measurement, the topic of this section,
and subjective expected utility, the topic of the 6th one. In con-
joint measurement no concatenation operation is assumed, but another
kind of structure having to do with the fact that most attributes
can be manipulated by several independent variables, sometimes per-
mits representations of the following type.

Let > be an ordering of a Cartesian product {ﬁ1'Ai’ where each
A. is a set. Such a structure is called decomposable relgtive to

i
(a real-valued function) P: Re™ —>Re if there exist functions
B

@it A;—»Re, i=1, ..., n, such that for all (a1y eoey a5)s(byy eesy by)

€74, -
(a.l,...,an) p (b1,...,bn) irvf P( ?1(a1),..., ?n(an))zF( 501(b1),...,?r§bn)j

Phis definition expresses the fact that the contributions of the

variablzs to the overall measure are independent of one another. This
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is a very general reguirement, but i{ is by no means a trivial one,
since it is not satisfied in eil cuses. For example, sﬁppose that
n=2 and let 901: Aj—>Re and ¥W;: A; —>Re for i=1, 2, be given
functions. For all a,b € A4, Dyq € Ao, define the ordering > on

A1 x Ap by

(,9) 3 (by0) 122 @1(a) + Pp() + Wy(a) Pplp)
? ?1(b) + 502(‘1) + y1(b) }”2(‘1)

This M"additive structure with independent interaction" is not in
general decomposable relative to any function. In spite of the na-
tural interest in this model as, perhaps; the simplest form of inter-
action, we know nothing about its properties. No necessary conditions
(except weak ordering) have been discovered.

The only two-component caseé*so far investigated are the additive
one, F(x,y) = X + &, and the multiplicative cne, F(x,y) = XYy« In
general, the multiplicative model can not be reduced to an additive
one by a logarithmic transformation because the scale values may be
negative., In the three-component case, the functicns F(x,y,z) =X+ ¥+ 3
xyz, {(x + y)z, and x + yz, are thoroughly investigzated. In the sequel

we will confine ourselves to the n-component additive case.

The most familiar example of an additive model is, of course, the
one from economics that says that the cardinal utility of a commodity
bundle is equal t0o the sum of the utilities of each of its compo-
nents. As a matter of fact this model inspired much of the earlier
work on additive conjoint measurement (cf., for example, Debreu, 1960).
In psychology a two-dimensional example is obtained if we let sub-
jects compare the loudness of pure tones, varying both their inten~
sities and frequencies. In both examples it is possible to draw in-
difference curves to represent the equivalence classes in the data
structure. The theory establishes a systematic way to associate
numbers with the indifference curves that, in a sense, represent the
amount of atitribute exhibited by that curve. .

An example where this has been done successfully (but independently
of the theory, I must adwit) can be found in studies of Campbell and
Masterson (1968) on the aversiveness of shocks. On one side of a
shuttle box they placed shock with resistance Z and voltage Vz; and
on the other, shock with resistance Zo and voltage Vo. Throughout

# of decomposition
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the experiment Z0 was held fixed, and for each (Z,VZ)-pair they
discovered the value of Vo such that 50% of the animals selected
each side., They found that the empirical values satisfied a relation-

ship of the form

V, =&+ gV, +yz +8V 2z,

which is equivalent to the additive form

1og(8Vz +YB - «8) = log( y+ Svo) + log(p + 82z).

Many other examples of trade-off between variables can be found in

the literature.

In all axiomatizations of additive conjoint measurement, certain

necessary cancellation conditions play an important part. One of these

conditions expresses, quite directly, the fundamental independence of

the variables: for all a,b&4A4 and p,q€ Ao,

(a,P) = (b,p) iff (ayq
and (ayp) = (a,q) iff (b,p

) 2 (vyq)
) Z (

2
P by‘l)-

Notice how this follows if an additive representation is true:
(a,p) = (byp) itz @(a) + P,(p) > py(b) + P,(p)

P1(a) 2 4(d)

it @y(a) + Pr(a) 2 @ () + p(a)

iff (ar‘I) > (b7Q)-

if

)

As a matter of fact this condition justifies the natural definition

of an induced order ?1 on the first dimension:
a 24 b iff Yk e A, we have (2,x) 2 (byx).

Similarly, we may define 2, on the second dimension. Another pro-
perty that can be arrived at in the same way is called double can-

cellation: for all a,b,f € A and p,q,x € Ay,

if (a,x) > (£,q) and (£,p) > (b,x), then (a,p) > (b,q).



Other cancellation properties can be obtained by considering three
or more inequalities in which all save four elements can be "can-
celled", Later, we explicitly give one of the three inherently
different forms of triple cancellation. All these conditions are
necessary, and all may be checked directly in any set of data. For
fairly large data structures, this is a very time~consuming task;
indeed, it is only practical if a computer is used.

We may, howevrer, regtrict the number of necessary conditions
needed to get an additive representation by strenghtening the suffi-
cient conditions that impose structure on the system. This is done
in the following axiomatization ofAn-dimensional conjoint ﬁeasure-

: n
ment, with n » 3. Let A denote the cartesian product i'r_'r A4, when

1
nz3.

1) <A,2) is a weakly ordered set.

ii) If N = {1, 2y eeey n}, then for all MCN the ordering induced

on i76TM A; for any fixed choice of elements iI/l iETI:T—M A; is

independent of that choice.

Aviom ii) permits us to define >i on Ai in the obvious way, and it
turns out to be the only cancellation axiom that we need when n 2 3,

provided that we impose a strong solvability condition. Luce and
Tukey (1964) postulated the following solution (of egjations) axiom:
Y a,be A, DEA,, P x €4, 3(ayp)~(byx). This has béé"rf‘justly cri-
ticized as being too strong; in many examples it is easily seen not
$0 be satisfied (e.g., loudness judgments). Therefore, Luce (1966)
modified it to the following restricted solvability condition:

Y a,v€ 4y, peAy, if ] X,x3(b,X) > (a,p) 2 (byx), then J x 3 (b,x)

~(a,p)e A simple generalization gives us

iii) For all (31’ sy an)éA, (b-], ceeey bi_1, bi+1' coey bn) €

AgXeooXAy_ 1XAj qXesoXA,, if there exist a b; and a bjsuch that

(b1, coey :t-)i’ ooy bn)?(a.l’ esey an))(b1, sooy Ei, evey bn)’

then there exists a b; such that (b1,...,bi,...,bn)~(a1,...,ai,.,an)
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Moreover, we need a nontrivialness axiom:

iv) PFor at least three components A; there exist aj, b; € A; such that

ai »i bj. Such components are called essential.

In order to state the necessary Archimedean axiom, we need the following
definition: Let N be a succession of integers, positive and/or negative,
finite or infinite: 4 sequence {afl aze Aj AYexn Aap,qEAj, J#£1i, 2
(...,a;...,p,...)fv(...,az-*i,...,q,...) for Y, Y+1eH}is called a

standard sequerce. The Archimedean axiom simply is

V) Every bounded standard sequence is finite.

Theorem 4.13 If axioms i)-v) hold, then there exist Pi Ay
Re’ i= 1, ceceae)y n, Such that fOT all (a‘l,-o.,an),(b‘l,ooo,bn)eA,

(a‘l’-oq’an)?o(b‘I,--o,bn)iff

n n
) (s )e
21 ?i(ai"?1§1 991(1)1)

Moreover, if ?;_ is another set of such functions, then aa >0, B4y

i=1’ooo,n’ such that ?1 = GP:{ + po

Notice that we have not yet formulated a represenfation theorem for the
two~component cases. This we must do, not only because it is of interest
and importance in its own right, but also because the only known proof
of the n-component case involves reducing the problem to the two-com-
ponent case. There is no need to alter the weak ordering, solvability,
and Archimedean axioms in the two-component case. The property of in-
dependence is, however, too weak and it is replaced by two cancellation

properties, namely, double cancellation:

(i1} for all a,b,f €44 and p,q,x€4p
(a,x) 2(£,p) A (£,p) 2(byx) imply (a,pj>(b,q)

and by one of the three %orms of triple cancellations

(1i1) for all a,b,fyg€Aq and pyqyX,y &€ 4n
(a,%) 2 (b,5) A (£,7) > (2,x) A(g,yp) > (£,2) imply

(a,p) 2(b,q).



- 282 - - R.D.Tuce -

From these assumptions it is easily shown that independence holds
and so a wegk ordering is induced on each component. The final assumption

is that both co-ordinates are essentigl. This 18 all that is needed.

Theorem 4.2; If AXAr, 2 satisfies the weak ordering, double and
= a2y 2

triple cancellation, restricted solvability, Archimedean and essential-

ness conditions, then the conclusion of theorem 4.1 holds with n=2.

It is an open problem to show that double and triple cancellation are
independert axioms, or to derive one from the other.

We now outline the nature of the proofs of Theorem 4.1 and 4.2.
tet Ay and Aj be any two essential components in the n-component case.
It is easy to see that the induced crder >ij satisfies all of the
assunptions of Theorem 4.2 except the two cancellation properties.
These also follow. It is fairly difficult to prove them for resiricted
solvability, but easy for unrestricted. For example, suppose a,b,f €4,
and pyq,x €43 and (ayx) ?ij(f,q) and (f,p) ?ij(b,x). Let A, be any other
essential component and let ueAk. By solvability, Hv € Ak such that

(f,x,v)Nijk(a,x,u) %ijk(f,q,u),

and so (x,v) )jk(q,u). Since (f,x,u)fvijk(a,x,u), then by independence

X may be replaced by p, and so
(a,p,u)Nijk(f,p,v)éijk(b,X,v)Bijk(b,q,u).

Thus, (a,p) ?—ij(b,q). The proof for triple cancellation ig similar.
By theorem 4.2, there exists an additive representation ?i + goj on
Ai X AJ.

There is, however, a problem. Suppose we picked i,jé& N and found
mappings ?i: Ay —)Re] and gﬂj: Aj—->Re. We can of course also choose
another pair i,k€N, with k # j. This gives us the mappings 30;-. Ai—>Re
?k: Ay —>Re. It must be shown that SD;. =a ?i+-B’ with @ >0, Finally,
it can also be shown that if we choose our functions goi carefully so
that the units and zeroes are appropriately reiated, then this provides
an additive representation. When we accept this, the problem is reduced
to the two-component one.

The next step in the reduction process used to prove Theorem 4.1 is to

reduce the two dimensional system of Theorem 4.2 40 a special, symmetric

and
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case. In Figure-1, the cartesien product Aq X Ay is portrayed as a

rectangle, as it will be in the desired representation.

(aip)
Py .
(a=fyp=1) o<ld(afp~1)
Po <a-1,p-z§f//
v
Figure 1
ao L al

The points 8ny219PsP, are chosen in such a way that (ao,p1)~(a1,po)
and they determine the unit and the unit square consisting of all points
(x,y) for which 812 Xx2a, and Py 3y 2P, (the shaded area in Figure 1).
Suppose that we now want to assign a number to the point (a,P) in
Figure 1., We move unit steps in both directions until we arrive at a
point in the unit square. This process is alsoc illustrated in Figure 1.

Then, of course, the sensible thing to try is the assignment:

¢,(a)
?Q(P)

1

?1(8.-1) + 1

?Q(P"z) + 2,

where the coordinates (a-1, p-2) are coordinates of a point in the unit
squares The main part of the proof is to show that this inductive pro-
cess-can indecd be carried outs. It relies heavily on the assumed triple
cancellation and restricted versions of the other two triple cancellation

conditions which can be proved from the axioms,.

A system <A1 R A2,)> is called symmetric if for all a,b€ 44,
]p,quz B(a,p)'V(b,q'). Such systems can be mapped into a square,
whereas the general case results in a rectangle. So we are done if we

can get the representation in thiscase. Define the set
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¥* .
>1 1 by

A% = {ab | asp€4, Aa >1b},and define 2.* on A
. * s ¥ . %
if ab,cd € A1 sy then ab 24 ~ed iff p,qu2 whenever
(ayp)~(byq), then (dyq) Z(cyp)
Do the sume thing for the second coordinate, which gives an A and
a >.%. Now it can be proved that <A ALK >*> and <A A K >*>
=2 °* i B 2172 1 72
satisfy the axioms for positive difference systems, so by corrolary

3.3 (previous section)

3?1: Ay—>Re, Po: Ay *Re >
*

ab 2," cd iff 901(a) - ¢1(b) P ?1(0) - §o1(d)

Pa 2, uv iff @y(p) = @,(a) Z Fo(u) -~ @,(v)
Noreover we pick an a;>agy and pq>pg such that (ao,p1)~(a1,po) and
we set P,y(ag) = ?z(po) = 0 and ?1(3.1) = P,(py) = 1, and define
Yi(ab) = ¢4(a) - 94(b), Yo(pa) = Po(p) - P,(a)e The next thing
to be established is that the two systems <A1,A1*, ?1*> and
<A2,A2*, ?2*> have essentially the same structuree.
Define: 6 (at) = ap ire (a,p)~(b,a),

then it is shown that & is an isomorphism, and that Y, = Wg(e).
The final step in the proof of Theorem 4.2 is simple: It just remains
to be proved that the y/'s are order preserving. Observe that

?1(3) + )’02(13) ? ?1(1)) + ?2(‘1) iff ?1(3) - P-l(b) 3;02((1) ‘fz(P)
122 Y 4(ab) > y,(3F)

if

H

‘)‘/1(8%)?,”2(6(&1))9 where (Cyp)“'(d!Q)
ire Yq(ab) 2 yy(cd)
irf ab >* ad

iff (a,p) z(bNI) .
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5« Bisymmetry Systems

A theory due to Pfanzagl, which assumes a concatenztion operation,
can be reduced to additive conjoint measurement. His theory is similar
to extensive measurement, but iv is moré general in that, among other
things, it axiomatizes the formation of weighted means. Suppose thé;t
‘O is a fixed number in [O, 1] and for any real numbers a,b, we define
aob= f) a+ (1 -F)b. We see that o has many properties different
from extensive measurement. For example, a 0 a~a, 0 is not commutative,
and o is not associative.

Pfanzagl begins with a structure <A,o,?> and he assumes:

i) <A, 2> is a weakly ordered set,
ii) abiffaoczbocAcoa2cob,

iii) A is connected in the order topology induced by >,

iv) a o b is continuous in both a and b, .

v) (aob)o(cod)~(aoc)o(bod).

This last axiom, the bisymmetry axiom, does not imply that the systenm
is associative and/or commutative. Observe that this axiom is true

for weighted means. Pfanzagl proved the following result:

Theorem 4.3: 1f (4,0,>) satisfies axidms i)-v), thcre exist real
numbers /o',O' >0, A and a function @: A->Re such that

i) azb irf @(a) ?«?(b),
ii) 60 is continuous,
111) @ (aod) = P @(a) + O ¢ (b) +A,

iv) it 50' also satisfies i)-iii) then 50' = a?+ By with @ > Q.

Corrollary 4.3:

i) if aca~a, then A= 0, and pP+T =1

ii) if the structure is commutative, then/.>= 0= 1

iii) if it is both commutative and associative, then/) =0 = 1,and A=0

In the last case we have extensive measurement (set YI = ? +/\). In
the first case we have the weighted mean interpretation. The proof of
the theorem can be carried out by reducing it to the twodimensional

additive conjoint case.
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Define
(ayp) 2 (byq) iff aop2bogq

The various axioms of theorem 4.2 must be proved. We establish double
cancellation as an example: suppose (a,x) >(f,q) and (£,p)>(b,x), then
by definitior aox > foq and fop >box. Now consider

(aop)o(xox) ~ (aox)o(pox) (by bisymmetry)
2 (foq)o(pox) (by monotonicity)
~(fop)o(qox) (by bisymmetry)
> (box)o(qox) (by monotonicity)
~(bog)o(xox) (by bisymmetry)

It follows by monotonicity and transitivity of > than {aop)2> (bog),
henze (a,p)>(b,q). The proof of triple cancellution ie somewhat more
complicated, but similar. The most difficult pari is %¢ derive the sol-~
vability and Archimedean conditions from the tupolugical axioms (iii)

and iv). This can Lte done.

6. Conditional Expected Utiiity Theory

Expected uti lity theories attempt to describe the behavior of a rational
decision maker when confronted with choices among uncertain prospects.
The principal primitive notions are "event" and "consequence", An "un-
certain prospect" or "gamble" consists of a finite number of chance
events, say €ireecyy and a consequence associated with each event, de-

noted by CqseeesCpe Expected utility theories construct two real-valued

n
functions: a utility function u that maps the set of consequences into

the veals and a probability measure P that is defined on the evemts. The
expecied utility EU is computed by taking expectations:

EU = g u(ci)P(ei),
i=1
and it orders gambles in the same way as do .the preferences of the ra-
tional decision maker.

The first modern discussion of expected utility theory is in an appendix
of the 1947 edition of Von Neumann and Morgenstern's classic booke They
were concerned with simple gambles in which consequence a arises with
probability p and consequence b with probability 1-pe. The probabilities
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were assumed to ve given in a numerical form., Such a gamble can be written
as apb. Von Neumann and Morg-nstein also intrvduced a compounding operation
that makes i1t possible to construct more complicated gambles, such ac
(apb)qc, from simple ones. They axiomatized an ordering > over simple
gambles and simple compounds of them., The axioms they introduced garanteed
the existence of an order-preserving numerical expected utility function.
The construction of this function depended on the numerical values of the
objective probabilities, which obviously means that their procedure is

not an example of fundamental measurement. Blackwell and Girshick,
Samuelson, and others generalized this approach to n-component gambles

(cfe Luce cni Raiffa, 1957). A much deeper generalization was provided by
Savage (1954), who completely dropped the objective probability assumption.
He inwroduced axioms that are sufficient for the existence of both a sub~
jective probability measure P and a utility u with the property that a
gamble I is preferred to a gamble g if and only if the subjective expected
utility of t is greater than the subjective expected utility of g. Savage's
theory is vcry geaeral, but as we shall see it has certain unnsgtural

features.

Another line of development was initiated by the philosopher Ramsey (1931)
whose idear. were worked out in detail by Supves and his collaborators (cf.
Davidson and Suppes, 1956). The main difference from Savage'!s approach is
that Ramsey firat constructed a utility function, from which a probability
function is <vhem developed; whereas, Savage begtn with axioms sufficient
for tha existence of a (subjective) probability measure, and he then de-
fined utilities in terms of these probabilities (as Von Neumann and Morgen-
stern did in terms of objective probabilities). The Ramsey-Suppes-Davidson-
Winet approach is still restricted to very simple, two-component gambles
with independent events. Pfanzagl (1967) generalized this in such a way
that compounding of non-independent events became possible. A still more
general treatment of the problem is given by Luce and Krantz (1968). Not
only does their axiom system cover general gambles as well, but a more
general representation is obtained which also generalizes some ideas of

Jeffrey. Schematically this historical discussion may be summarized as

follows:
Von Neumann & Morgenstern
R
Blackwell & Girshick Ranmsey
Samue%son
Savage Suppes et al,

Pfanagl Jeffrey
i
Luce & Krantgz
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In comparing Savage's statistical deecision theory with the .Luce-Krantz
conditional theory, it is important to recognize that in most cases of
prastical interest people think in a conditional waye. If you want)to

decide whetker to go to Paris by plane or by car, for example, the reason-
ing is typicelly conditional. When considering the events that can arise
when going by car, the fact that the plane may crash is simply not relevant,
It ie, of course, when considering the possible eveats associated with

the flight. Moreover, the unconditional formulation of decision theory

in the Savage-approach is highly inefficient. Consider the following simple
example, in which there are two gambles: the first one is the throw of a
die (D)

event 1 2 3 4 5 6 I

consequence =3 -2 -1 1 2 3

The second one is the throw of a coin (C)

event Head Tail

concequence 10 =10

In the Savage formulation we must consider the complete cartesian product

of states of nature and list all outcomes.

iH [ 1T 2H | 2T | 3H | 3T 44 | 4T 5H 5T 6H | 6T

D |=3 |=3 |=2 |[=2 |[=1 [=1 |+1 |+1 | +2 [+2 |43 | +3

¢ | 410 | =10 | +i0] =10| +10| =10 | +10 | =10 | +10 | =10 | +10 | =10

In the conditional formulation, we list all possible consequences and for

each decision 1list the events that cause each to arise:

-10 =3 -2 -1 1 2 3 10

clr | g || P|P|P|P =

Of course the information in these two schemes is the same, but evidently

the Savage notation is the more redundant, even in this simole example.
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That the two approaches can be translated into each other in the finite
case may not be clear at first sight. To show it, we first list the primi-
tives of the statisticazal approach: a set fg of states of nature, a set T
of consequences, and mappiags of the form f: ’3 — T . “he representation
involves two functions, a utility u: "C—>Re and a probability Q:
’3%[0,1], and subjective expected utility is defined as I uEE(si)] Q(sy)e
The summation is over all stztes of nature. :
In the conditional approach, the primitives are a set X, en algebra E/
of subsets of X, a set of consequences T, and mappings :EA: A>T for
A eé,. The representation yields u: T—>Re,, and P: é,—» [O, 1], and the
expected utility is defined as Eu(ci)P [fz1(ci)|A], where the summation
is over all consequences. The translation of the statistical theory into
the conditional is trivial: define X = 5 - L = 2:S H fX = f;4 P = Q3 and
u = ue The translation from the conditional to the statistical theory is
less obvious. Define ¥ = 11 Ags Q(si) = LT[P(si'L) ,P(Az)], where

Aet

Sie 5’ iece l
ceey si); f(si) = fA(Si) where Jis the index such thet

si = (S;I., ssey Sj"&,
AZ = A; and u = ue One then shows that the latter expectation implies the

formere.

The primitives of the Iuce-Krantz axiomatization are as followse. First,
we have an algebra of subsets (t/ of some abstract set X. Moreover, a sub-
se'l; TZ g_a must be characterized by the axioms. Intuitively, the elements
of 72 can be thought of as those events that are judged as having no
probability of occurring. We condition only on events in E/- 7? to avoid
division by O in the representation. Again T denotes the set of con-
sequences. The decisions are a set of functions ﬂg—_ {fAIfA: AT,
Leé - n } . Finally we have a binary relation > on ]). Decisions can
be compounded in the following way: if ANB = #, A,Be £ =7, £,,85€ D
then £, Ugy(x) = aef{ZAg; g z:%- If BgA and Be £ -7, then (£,)g
denotes the restriction of £y to the set B. The axioms of a conditional
decision structure can now be stated as followse.

For all A, BEE -7, 7,, £}, g5 € J)

i) a. ANB =g = fAU.gBe/’D
be BEA = (£2)g e D

ii) </O, ?a> is a weakly ordered set.

iii) ANB =g A fyrrgy = fyugy~1,.
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This last axiom bears an obvious resemblance to the monotonlicity condiiion
in exteunsive measurement (cf. section 1, axionm vi). Moreover, the famous
sure~thing prineiple i= . special case of axiom iv. The sure-~ihing prin-
eiple asserts that if fo. each possible outurcome the consequence of gamtle
T is preferred or indifferent to the consequence of gamble g and for at
least one outcome it is striectly preferred, then gamvle £ will be pre-
ferred to gamble ge

For our next axiom we need the following definition: a sequence

{f&i) |2{t) e D, 1€N} 1s called a standard sequence if ] Be& -7
3ANB =@ /\flg]go), g§1) e sV i,ivien, f&i)Ug£1)~I£i+1)Ug£o).

The Archimedean axiou is as usuals

v) every bcunded standard sequence is finite,

Moreover, we use the notion of a standard sequence in:

vi) {r&i) l N}, {hﬁi) lN} are 8e3. A\ ]k k+1 e N 3 2{E)nfk) A

f§k+1)~h£k+1) = Vien, f‘gi),\,h‘gi).

Our next axiom characterizes the set 7?.

vii) as BE€NNscr =sen,

e BOP & £,z uplye

The next axiom is a non-triviality assumption.

viii) a. & -7 hes at least three pairwise disjoint elements.

b.jg/ﬂi has_at least two equivalence classes.

The final axiom is similar to the solvability acioms that we have pre-
viously used in the other measuvement models. Suppose that A,B€ é-?‘z,

hy) hﬁa)’ g £y up <D
ix) a. ]hAeDBhA~gB.
b, 4nB = g AnfDug 22, sz 2 n{Pueg, > In, e D>
by Ugg ~1Iyy

Clearly the first part of axiom ix) is a form ol unrestricted solvability,
and this is one part of the axiom system that we would reaily liike to
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weaken. Surprisingly enocugh, the second part of axiom ix) is independent
of the first part, although it is rather like the restricted solvability
agsumption we made in addiiive conjoint messurement.

Theorem 5.1: If <X,£ e Z',D,/> satisfies axioms i)=ix), then there
exist functions u: f) —>Re gug P: —>[O, J such that, for all f,,gpe [},

8e <X,£,P> is & finsteiy additive probability space.

b. B €& P(R) = 0.

ce 4> gp © u(fy) > ulgy).

de Af ANB = @, then u(fyugp) = u(fy)P(4]{AUB) + u(gg)P(B[a UB).

e, P is unique, and u is unique up to a positive linear transfor—

mation.

Trere are some important differences from Savage's result. In the first
place, the utility function is not defined on the set of consequences.

As a matter of facf, we could even do without L since the axioms nowhere
refer to U . Part d. of theorem 5.1 does not say trat u is an expectation
in the statistical sense; it has a major property of an expectation, but
only under very special coanditions is it actually onee. The infiniteness of
Savage's system is explicitly built into the set of states. The infinite~
ness of the Luce-Krantz system is in the setiﬁecisions) but not necessarily
in éL; the algebra of subsets é, is only specified to be non-empty. A
serious weakness in the statistical approach is the essential role in the
construction of u and P that is played by constant decisions, i.e. decisions
tha%i%ﬁe same consequence independent of the state of nature. Constant
decisions may be reglizable in simple situavions, but they are very un=-
realistic in realistic settings. It can be shown that there is a reali-
zation of the Luce~Krantz system in which there are no constant decisions.
To get a utility funetion over'zf, let c, denote the constant decision

with fk(x) = ¢ for all x €4A. If we add the following assumptions,
x) ¢ £T=>]A(c)6é»-7? scA(c)eD
. o~
x1) CA, CB GJ‘J =» CANCE
to axioms i)-ix), then it follows that there exists v: Z)—)Re such that

for any gamvle £,e/), u(z,) = E[v(z,) l4], where E denotes taking

expuctations. A gamble is a decision with a finite image and for e eT
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f?(c) € é.Note that assumption x) is trivially true if, for example,
the toss of a coin is included in é, ; 1t is much weaker than assuming
that all constant decisiuns are in f) . Another important case, not ad-
missible under Savage's axioms, is where the utility of e decision has
contributions from both the consequences and the conditioning event.
For example, suppose that w: & —> Re is such that for ANB = @,
w(AUB) = w(aA)P{A|AUB) + w(B)P(4|A UB), and v: "U > Re, then a
utility for gambles may be defined as u(fA) = b [v(fA)lA] + w(a).
This more realistic model, whickL can be interpreted as admitting
utility~-for-gambling, is consistent with axiom 1)=x) but, of course,
not with xi) excep: when w = 0.

Savage's method of proof was to obtain subjective probabilities, from
which he constructed the utility function along the lines of Von Neumann
and Morgenstern's proof. In our approach P and a come out simultaneously.
We briefly sketch the nature of the proof. Take an arbitrary non-null
event A and partition it into ron-null sets Ay, i=1, «..y L. Let DA
denote the subset of .D whose elements a.re defined on Ai. Define
oL 77 /UA

’1

(fA-l’fAz’...’fA.n) >1(8A1’8A2’...’gAn)% fA-lU fAzu eee UfAn? gA-lUgAzU.. UgA"

It is possible 10 show that in (TT -DA ’ /1> the axioms of n-dimensional
conjoint measurement are satisfied (if n=2 we have 10 te careful, but start-
ing with a more refined partitioning of A makes n>3 again). Therefore

] ?i: fAi——> Re, and these functions are, of course, order-preserving and
unique up +to positive linear transformations. A different partitioning
defines other functions, but they can ve shown to be of the same family.
We have to pick ¢ particular one: if f(1)>f(o) then for any A there
exist g£1)~f(1) and g&o)rvf(o) Zero and unit are established by picking u,
so that uA(gXOI) = 0 and uA(gy)) = 1. For any QA’ this defines a unique u,.
And because ) is the union of the 'DA’ let u on Jf) be the union of all
these functions. For ANB = ¢, we have
u(fAUgB) = (PA(fA) + ('PB(gB) = P(aa UB)u(z,) + Bu,p * P(:B[AUB)u(gB) * Bg, 49
where ‘)'DA(fA) = P(AIAUB)u(fA) + 34,3 is simply the linear transformation
that relates §,(£,) and u(f,) = u,(£,)e 1t remains to be proved, that the
P-velues ar: conditional probabilities, that By , + By,p = O and that u is
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order-preserving. Since g&o)naf(o)ﬂ,g 0), we also have ggO)nggo)ﬂJf(o),
0) 0)) = 0= U 0 P v (d} + ‘ + =
so u(gf) ugl®)) p(alaue)u(ef®) + 2(B1aUB)u(el®)) + g, 5 + 8p 4
O+ 0+ BA gt BB G By using the g(1)-elements ir a similar way, we
? ¥
establish thal the P's are conditional probabilities. Tre proof that u is

order-presarving is rather difficult.

Although this is perhaps the most satisfactory existing axiomatization
of subjective expected u%ti’ity, some improvements are clearly possiblec,.
First axiom ix) I1:- rather strong; we especially would like to weaken
part a). Seconi, some data and examples suggest that the sure-thing prin-
ciple iz nct a very good description of actual decision making (although
it certainly seems rational to many people, though not to all). And
finally, in the algebra E—, all events are treated as ejually realizable,
and iu may be usaful to partition E,iﬂio those that are realizable and
those that are orly used for mathematical purposes. For example, the sub-
events of £ plaac IMMight and of & car trip seem more natural conditioning
events for decls’ou’ vcual does, say, the event {plane arrives % hrs. late,
auto arrives on cime}. The peculiar structure of é,, in which all events
are treated alike, may even be related to the violavions of the sure-thing

principle.

Concluding Note

In these lectures we have discussed a nuvuber of different examples of
fundamental measurement. They are summarized ia the following diagram, in
which the reductions uged to prove the reprasentation and uniqueness

theorems are indicated by arrows.

conditional expected utility theory
{
n-dimensional additive conjoint measurement
bisymmetry structures 5 2-dimensional additive conjoint measurement

conditionel probability ——» positive difference structures

unconditional probability —» extensive structures

This is not the only possible hierarchy of axiom systems. Pfanzagl, for

example, reduces all systems he investigates to bisymmetry structurese.
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